一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于自適應(yīng)截?cái)嗖呗缘募s束多目標(biāo)優(yōu)化算法

畢曉君 張磊

畢曉君, 張磊. 基于自適應(yīng)截?cái)嗖呗缘募s束多目標(biāo)優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237
引用本文: 畢曉君, 張磊. 基于自適應(yīng)截?cái)嗖呗缘募s束多目標(biāo)優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237
BI Xiaojun, ZHANG Lei. Constrained Multi-objective Optimization Algorithm with Adaptive Truncation Strategy[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237
Citation: BI Xiaojun, ZHANG Lei. Constrained Multi-objective Optimization Algorithm with Adaptive Truncation Strategy[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237

基于自適應(yīng)截?cái)嗖呗缘募s束多目標(biāo)優(yōu)化算法

doi: 10.11999/JEIT151237
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金資助項(xiàng)目(61175126)

Constrained Multi-objective Optimization Algorithm with Adaptive Truncation Strategy

Funds: 

The National Natural Science Foundation of China (61175126)

  • 摘要: 為提高約束多目標(biāo)優(yōu)化問(wèn)題所求解集的分布性和收斂性,該文提出基于自適應(yīng)截?cái)嗖呗缘募s束多目標(biāo)優(yōu)化算法。首先,自適應(yīng)截?cái)噙x擇策略能夠保留Pareto最優(yōu)解和約束違反度及目標(biāo)函數(shù)值均較優(yōu)的不可行解,不僅提高了種群多樣性,而且能夠較好地兼顧多樣性和收斂性;其次,為增強(qiáng)算法的局部開(kāi)發(fā)能力,在變異操作和交叉操作之后進(jìn)行指數(shù)變異;最后,改進(jìn)的擁擠密度估計(jì)方式只選擇一部分Pareto最優(yōu)解和距離較近的個(gè)體參與計(jì)算,不僅更加準(zhǔn)確地反映解集的分布性,而且降低了計(jì)算量。通過(guò)在標(biāo)準(zhǔn)測(cè)試問(wèn)題(CTP系列)上與其他4種優(yōu)秀算法的對(duì)比結(jié)果可以得出,該算法所求解集的分布性和收斂性均得到一定提高,而且相較于對(duì)比算法在求解性能上具備一定的優(yōu)勢(shì)。
  • WEI H. Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3914-3925. doi: 10.1016/j.ijhydene.2013.12.129.
    ABDELKHALEK O, KRICHEN S, and GUITOUNI A. A genetic algorithm based decision support system for the multi-objective node placement problem in next wireless generation network[J]. Applied Soft Computing, 2015, 33(8): 278-291. doi: 10.1016/j.asoc.2015.03.034.
    PARENTE M, CORTEZ P, and CORREIA A G. An evolutionary multi-objective optimization system for earthworks[J]. Expert Systems with Applications, 2015, 42(19): 6674-6685.
    GRASSO R, COCOCCIONI M, MOURRE B, et al. A decision support system for optimal deployment of sonobuoy networks based on sea current forecasts and multi-objective evolutionary optimization[J]. Expert Systems with Applications, 2013, 40(10): 3886-3899. doi: 10.1016/j.eswa. 2012.12.080.
    孟紅云, 張小華, 劉三陽(yáng). 用于約束多目標(biāo)優(yōu)化問(wèn)題的雙種群差分進(jìn)化算法[J]. 計(jì)算機(jī)學(xué)報(bào), 2008, 31(2): 229-235.
    MENG Hongyun, ZHANG Xiaohua, and LIU Sanyang. A differential evolution based on double population for constrained multi-objective optimization problems[J]. Chinese Journal of Computers, 2008, 31(2): 229-235.
    WOLDESENBET Y G, YEN G G, and TESSEMA B G. Constraint handling in multi-objective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 514-525. doi: 10.1109/TEVC. 2008.2009032.
    張勇, 鞏敦衛(wèi), 任永強(qiáng), 等. 用于約束優(yōu)化的簡(jiǎn)潔多目標(biāo)微粒群優(yōu)化算法.電子學(xué)報(bào), 2011, 39(6): 1437-1440.
    ZHANG Yong, GONG Dunwei, REN Yongqiang, et al. Barebones multi-objective particle swarm optimizer for constrained optimization problems[J]. Acta Electronica Sinica, 2011, 39(6): 1437-1440.
    LONG Q. A constraint handling technique for constrained multi-objective genetic algorithm[J]. Swarm and Evolutionary Computation, 2014, 15(4): 66-79. doi: 10.1016/j. swevo.2013.12.002.
    GAO W F, YEN G G, and LIU S Y. A dual-population differential evolution with coevolution for constrained optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 1094-1107. doi: 10.1109/TCYB.2014.2345478.
    JAN M A and KHANUM R A. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D[J]. Applied Soft Computing, 2013, 13(1): 128-148. doi: 10.1016/j.asoc.2012.07.027.
    畢曉君, 王玨, 李博, 等. 基于動(dòng)態(tài)遷移的約束生物地理學(xué)優(yōu)化算法[J]. 計(jì)算機(jī)研究與發(fā)展, 2014, 3(3): 580-589.
    BI Xiaojun, WANG Jue, LI Bo, et al. An constrained biogeography-based optimization with dynamic migration[J] Journal of Computer Research and Development, 2014, 3(3): 580-589. [12] 鄒德旋, 高立群, 段納. 用修正的差分進(jìn)化算法確定光電模型參數(shù)[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2521-2525. doi: 10.3724/ SP.J.1146.2013.01858.
    ZOU Dexuan, GAO Liqun, and DUAN Na. Determining the parameters of photovoltaic modules by a modified differential evolution algorithm[J]. Journal of Electronics Information Technology, 2014, 36(10): 2521-2525. doi: 10.3724/SP.J. 1146.2013.01858.
    TAN Y Y, JIAO Y C, LI H, et al. A modification to MOEA/D-DE for multi-objective optimization problems with complicated Pareto sets[J]. Information Sciences, 2012, 213(23): 14-38.
    DEB K and JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC. 2013.2281535.
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1178
  • HTML全文瀏覽量:  148
  • PDF下載量:  389
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-11-05
  • 修回日期:  2016-03-17
  • 刊出日期:  2016-08-19

目錄

    /

    返回文章
    返回