一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

具備視角協(xié)同學(xué)習(xí)能力的多視角TSK型模糊系統(tǒng)

程旸 顧曉清 蔣亦樟 杭文龍 錢鵬江 王士同

程旸, 顧曉清, 蔣亦樟, 杭文龍, 錢鵬江, 王士同. 具備視角協(xié)同學(xué)習(xí)能力的多視角TSK型模糊系統(tǒng)[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2054-2061. doi: 10.11999/JEIT151209
引用本文: 程旸, 顧曉清, 蔣亦樟, 杭文龍, 錢鵬江, 王士同. 具備視角協(xié)同學(xué)習(xí)能力的多視角TSK型模糊系統(tǒng)[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2054-2061. doi: 10.11999/JEIT151209
CHENG Yang, GU Xiaoqing, JIANG Yizhang, HANG Wenlong, QIAN Pengjiang, WANG Shitong. Multi-view TSK Fuzzy System via Collaborative Learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2054-2061. doi: 10.11999/JEIT151209
Citation: CHENG Yang, GU Xiaoqing, JIANG Yizhang, HANG Wenlong, QIAN Pengjiang, WANG Shitong. Multi-view TSK Fuzzy System via Collaborative Learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2054-2061. doi: 10.11999/JEIT151209

具備視角協(xié)同學(xué)習(xí)能力的多視角TSK型模糊系統(tǒng)

doi: 10.11999/JEIT151209
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61300151),江蘇省自然科學(xué)基金 (BK20130155),江蘇省產(chǎn)學(xué)研前瞻性聯(lián)合研究項(xiàng)目(BY2013015- 02),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助重點(diǎn)項(xiàng)目(JUSRP 51614A)

Multi-view TSK Fuzzy System via Collaborative Learning

Funds: 

The National Natural Science Foundation of China (61300151), The Natural Science Foundation of Jiangsu Province (BK20130155), The RD Frontier Grant of Jiangsu Province (BY2013015-02), The Fundamental Research Funds for the Central Universities (JUSRP51614A)

  • 摘要: 傳統(tǒng)模糊系統(tǒng)建模方法本質(zhì)上是一種單視角學(xué)習(xí)模式,面向適合多視角處理的場(chǎng)景時(shí),它們通常只能將每一視角割裂開來進(jìn)行獨(dú)立建模,這導(dǎo)致其所得系統(tǒng)泛化性能往往不令人滿意。針對(duì)此缺陷,該文探討具備多視角學(xué)習(xí)能力的模糊系統(tǒng)建模方法。為此,基于經(jīng)典的L2型TSK模糊系統(tǒng),通過引入具備多視角學(xué)習(xí)能力的協(xié)同學(xué)習(xí)項(xiàng),該文提出了核心的多視角TSK型模糊系統(tǒng)(MV-TSK-FS)建模方法。MV-TSK-FS不僅能有效地利用各視角不同特征構(gòu)成的獨(dú)立樣本信息,還能充分地利用各視角間由于相互關(guān)聯(lián)而存在內(nèi)在信息,以最終達(dá)到提高系統(tǒng)泛化性能的效果。在模擬數(shù)據(jù)集與真實(shí)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果驗(yàn)證了較之于傳統(tǒng)單視角模糊建模方法該多視角模糊系統(tǒng)有著更好的泛化性和適用性。
  • LI Guangxia, CHANG Kuiyu, and HOI S C H. Multiview semi-supervised learning with consensus[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11): 2040-2051. doi: 10.1109/TKDE.2011.160.
    HONG Chaoqun, YU Jun, YOU Jane, et al. Multi-view ensemble manifold regularization for 3D object recognition [J]. Information Sciences, 2015, 320: 395-405. doi: 10.1016/ j.ins.2015.03.032.
    ZHANG Shunli, YU Xin, SUI Yao, et al. Object tracking with multi-view support vector machines[J]. IEEE Transactions on Multimedia, 2015, 17(3): 265-278. doi: 10.1109/TMM. 2015.2390044.
    蔣亦樟, 鄧趙紅, 王駿, 等. 熵加權(quán)多視角協(xié)同劃分模糊聚類算法[J]. 軟件學(xué)報(bào), 2014, 25(10): 2293-2311. doi: 10.13328/j. cnki.jos.004510.
    JIANG Yizhang, DENG Zhaohong, WANG Jun, et al. Collaborative partition multi-view fuzzy clustering algorithm using entropy weighting[J]. Journal of Software, 2014, 25(10): 2293-2311. doi: 10.13328/j.cnki.jos.004510.
    TZORTZIS G F and LIKAS A C. Multiple view clustering using a weighted combination of exemplar-based mixture models[J]. IEEE Transactions on Neural Network, 2010, 21(12): 1925-1938. doi: 10.1109/TNN.2010.2081999.
    JIANG Yizhang, CHUNG Fulai, WANG Shitong, et al. Collaborative fuzzy clustering from multiple weighted views[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 688-701. doi: 10.1109/TCYB.2014.2334595.
    MERUGU S, ROSSET S, and PERLICH C. A new multi- view regression approach with an application to customer wallet estimation[C]. Proceedings of 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, 2006: 656-661.
    DENG Zhaohong, JIANG Yizhang, CHOI Kupsze, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1200-1212. doi: 10.1109/FUZZ-IEEE. 2014.6891544.
    STRM K J and MCAVOY T J. Intelligent control[J]. Journal of Process Control, 1992, 2(3): 115-127.
    鄧趙紅, 張江濱, 蔣亦樟, 等. 基于模糊子空間聚類的〇階L2型TSK模糊系統(tǒng)[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2082-2088. doi: 10.11999/JEIT150074.
    DENG Zhaohong, ZHANG Jiangbin, JIANG Yizhang, et al. Fuzzy subspace clustering based zero-order L2-norm TSK fuzzy system[J]. Journal of Electronics Information Technology, 2015, 37(9): 2082-2088.
    TAKAGI T and SUGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116-132. doi: 10.1109/TSMC.1985.6313399.
    MAMDANI E H. Application of fuzzy logic to approximate reasoning using linguistic synthesis[J]. IEEE Transactions on Computers, 1977, 26(12): 1182-1191. doi: 10.1109/TC.1977. 1674779.
    AZEEM M F, HANMANDLU M, and AHMAD N. Generalization of adaptive neural-fuzzy inference systems[J]. IEEE Transactions on Neural Networks, 2000, 11(6): 1332-1346. doi: 10.1109/72.883438.
    JIANG Yizhang, CHUNG Fulai, and WANG Shitong. Enhanced fuzzy partitions vs data randomness in FCM[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(4): 1639-1648. doi: 10.3233/IFS-141130.
    ITO K and NAKANO R. Optimizing support vector regression hyperparameters based on cross-validation[C]. Proceedings of the International Joint Conference on Neural Networks, Jantzen Beach, Portland, Oregon, 2003: 2077-2082.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1562
  • HTML全文瀏覽量:  160
  • PDF下載量:  441
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-10-29
  • 修回日期:  2016-03-15
  • 刊出日期:  2016-08-19

目錄

    /

    返回文章
    返回