基于復(fù)合高斯雜波紋理結(jié)構(gòu)的相干檢測(cè)
doi: 10.11999/JEIT151194
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61201296)
Coherent Detection Based on Texture Structure in Compound-Gaussian Clutter
Funds:
The National Natural Science Foundation of China (61201296)
-
摘要: 傳統(tǒng)的自適應(yīng)檢測(cè)器大多是在獨(dú)立同分布紋理的前提下推導(dǎo)出的。然而,實(shí)測(cè)海雜波數(shù)據(jù)中各個(gè)距離單元的紋理具有相關(guān)性。該文將這一紋理相關(guān)性的信息加入到似然比檢測(cè)中,提出一種基于紋理結(jié)構(gòu)的相干檢測(cè)器?;谟坷苏{(diào)制在距離上產(chǎn)生紋理相關(guān)性的先驗(yàn)知識(shí),確定與待檢測(cè)單元紋理相關(guān)的距離單元數(shù)目,據(jù)此可以提供待測(cè)單元的紋理信息。實(shí)測(cè)數(shù)據(jù)實(shí)驗(yàn)表明,該檢測(cè)器相對(duì)于逆伽馬紋理復(fù)合高斯雜波下最優(yōu)檢測(cè)器具有一定的性能提升。
-
關(guān)鍵詞:
- 海雜波 /
- 復(fù)合高斯模型 /
- 紋理相關(guān)性 /
- 自適應(yīng)檢測(cè)
Abstract: Traditional adaptive detectors are mostly derived under the assumption of independent and identically distributed texture. However, the texture correlation along the range cell exists in real sea clutter datasets. A new coherent detector based on texture structure is proposed by adding the information of texture correlation into the likelihood ratio test. Based on the prior knowledge that the texture correlation along range is generated by the swell modulation, the number of range cells related to the texture of the Cell Under Test (CUT) is determined, and this number provides the information for the texture of CUT. Experimental results using real datasets show that the proposed detector has better performance in comparison with the optimal detector in compound-Gaussian clutter with inverse gamma texture.-
Key words:
- Sea clutter /
- Compound-Gaussian model /
- Texture correlation /
- Adaptive detection
-
WARD K D, TOUG R J A, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. London, United Kingdom: The Institution of Engineering and Technology, 2006: 45-142. 張玉石, 許心瑜, 尹雅磊, 等. L波段小擦地角海雜波幅度統(tǒng)計(jì)特性研究[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 1044-1048. doi: 10.3724/SP.J.1146.2013.01139. ZHANG Yushi, XU Xinyu, YIN Yalei, et al. Research on amplitude statistics of L-band low grazing angle sea clutter[J]. Journal of Electronics Information Technology, 2014, 36(5): 1044-1048. doi: 10.3724/SP.J.1146.2013.01139. SANGSTON K J, GINI F, GERCO M, et al. Structures of radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 445-458. doi: 10.1109/7.766928. 鄒鯤, 廖桂生, 李軍, 等. 基于Bayes框架的復(fù)合高斯雜波下穩(wěn)健檢測(cè)[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1555-1561. doi: 10.3724/SP.J.1146.2012.01333. ZOU Kun, LIAO Guisheng, LI Jun, et al. Robust detection in compound Gaussian clutter based on Bayesian framework[J]. Journal of Electronics Information Technology, 2013, 35(7): 1555-1561. doi: 10.3724/SP.J.1146.2012.01333. KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127. doi: 10.1109/TAES.1986.310745. ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. doi: 10.1109/7.135446. 閆亮, 孫培林, 易磊, 等. 基于逆高斯分布的復(fù)合高斯海雜波建模研究[J]. 雷達(dá)學(xué)報(bào), 2013, 2(4): 461-465. doi: 10.3724/ SP.J.1300.2013.13083. YAN Liang, SUN Peilin, YI Lei, et al. Modeling of compound-Gaussian sea clutter based on an inverse Gaussian distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083. DONG Y. Optimal coherent radar detection in a K-distributed clutter environment[J]. IET Radar, Sonar Navigation, 2012, 6(5): 283-292. doi: 10.1049/iet-rsn.2011. 0273. BALLERI A, NEHORAI A, and WANG J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775-779. doi: 10.1109/ TAES.2007.4285370. SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77. doi: 10.1109/TAES.2012.6129621. DE MAIO A, FARINA A, and FOGLIA G. Knowledge-aided Bayesian radar detectors their application to live data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 170-183. doi: 10.1109/TAES.2010.5417154. 鄒鯤, 廖桂生, 李軍, 等. 非高斯雜波下知識(shí)輔助檢測(cè)器敏感性分析[J]. 電子與信息學(xué)報(bào), 2014, 36(1): 181-186. doi: 10. 3724/SP.J.1146.2013.00320. ZOU Kun, LIAO Guisheng, LI Jun, et al. Sensitivity analysis of knowledge aided detector in non-Gaussian clutter[J]. Journal of Electronics Information Technology, 2014, 36(1): 181-186. doi: 10.3724/SP.J.1146.2013.00320. CONTE E and DE MAIO A. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 284-302. doi: 10.1109/JOE.2004. 826901. GINI F, GRECO M V, and VERRAZZANI L. Detection problem in mixed clutter environment as a Gaussian problem by adaptive preprocessing[J]. Electronics Letters, 1995, 31(14): 1189-1190. doi: 10.1049/el:19950808. 關(guān)鍵, 丁昊, 黃勇, 等. 實(shí)測(cè)海雜波數(shù)據(jù)空間相關(guān)性研究[J]. 電波科學(xué)學(xué)報(bào), 2012, 27(5): 943-953. doi: 10.13443/j.cjors. 2012.05.026. GUAN Jian, DING Hao, HUANG Yong, et al. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5): 943-953. doi: 10.13443/j.cjors.2012.05.026. JAVIER C M, JAVIER G M, ALVARO B C, et al. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2024-2037. doi: 10.1109/TGRS.2009.2033193. -
計(jì)量
- 文章訪問數(shù): 1224
- HTML全文瀏覽量: 97
- PDF下載量: 439
- 被引次數(shù): 0