多基地雷達(dá)中雙門限CFAR檢測(cè)算法
doi: 10.11999/JEIT151163
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61372134, 61401329)
Double Threshold CFAR Detection for Multisite Radar
Funds:
The National Natural Science Foundation of China (61372134, 61401329)
-
摘要: 針對(duì)多基地雷達(dá)系統(tǒng),該文為解決傳統(tǒng)集中式檢測(cè)算法數(shù)據(jù)傳輸率大的問題,根據(jù)廣義似然比檢測(cè)算法和自適應(yīng)匹配濾波算法,提出兩種雙門限恒虛警率檢測(cè)器:雙門限廣義似然比檢測(cè)器和雙門限自適應(yīng)匹配濾波檢測(cè)器。首先各個(gè)局部雷達(dá)站將超過第1門限的局部檢驗(yàn)統(tǒng)計(jì)量傳送到融合中心。然后融合中心根據(jù)局部雷達(dá)站傳送的數(shù)據(jù)計(jì)算融合后的全局檢驗(yàn)統(tǒng)計(jì)量,并與第2門限比較,得到最終的判決結(jié)果。在各空間分集通道的信雜噪比假設(shè)相同的條件下,給出了雙門限自適應(yīng)匹配濾波檢測(cè)器的虛警概率和檢測(cè)概率的解析表達(dá)式。仿真結(jié)果表明,兩種雙門限檢測(cè)器在低數(shù)據(jù)率傳輸時(shí)能夠保持較好的檢測(cè)性能。
-
關(guān)鍵詞:
- 雷達(dá) /
- 雙門限檢測(cè) /
- 恒虛警率檢測(cè) /
- 廣義似然比檢測(cè) /
- 自適應(yīng)匹配濾波
Abstract: For multisite radar system, to solve the data transmission rate problem, two kinds of Double Threshold Constant False Alarm Rate (DT-CFAR) detectors, the DT Generalized Likelihood Ratio Test (DT-GLRT) detector and the DT Adaptive Matched Filter (DT-AMF) detector, are proposed based on the GLRT and the AMF algorithms. Fisrt, the local test statistics which exceed the first threshold are transferred to the fusion center. Then, the global test statistic is obtained from the local test statistics and the final decision is made compared to the second threshold in the fusion center. The closed form expression for probabilities of false alarm and detection of the DT-AMF detector are also given when the Signal to Clutter plus Noise Ratios (SCNRs) are identical in the spatial diversity channels. Simulation results illustrate that the DT-CFAR detectors can maintain a good performance with a low communication rate. -
HAIMOVICH A, BLUM R, CIMINI L, et al. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129. doi: 10. 1109/MSP.2008. 4408448. ZHOU S H and LIU H W. Space-partition-based target detection for distributed MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2717-2729. doi: 10.1109/TAES.2013.6621848. XU G, ZHU S Y, and CHEN B. Decentralized data reduction with quantization constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1775-1784. doi: 10.1109/TSP. 2014.2303432. GAO F, GUO L L, LI H B, et al. Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(4): 2032-2042. doi: 10.1109/TWC. 2014.2379279. BARKAT M and VARSHENY P. Decentralized CFAR signal detection[J]. IEEE Transactons on Aerospace and Electronic Systems, 1989, 25(2): 141-149. doi: 10.1109/7.18676. KAILKHURA B, BRAHMA S, HAN Y S, et al. Distributed detection in tree topologies with byzantines[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3208-3219. doi: 10.1109/TSP.2014.2321735. RAGO C, WILLETT P, and BAR-SHALOM Y. Censoring sensors: a low-communication-rate scheme for distributed detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 554-568. doi: 10.1109/7.489500. APPADWEDULA S, VEERAVALLI V, and JONES D. Decentralized detection with censoring sensors[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1362-1373. doi: 10.1109/TSP.2007.909355. GUL G and ZOUBIR M. Robust detection under communication constraints[C]. IEEE 14th Workshop on Signal Processing Advances in Wireless Communications, Darmstadt, 2013: 410-414. doi: 10.1109/SPAWC.2013. 6612082. HE H and VARSHNEY P. Distributed detection with censoring sensors under dependent observations[C]. IEEE International Conference on Acoustic, Speech and Signal Processing, Florence, 2014: 5055-5059. doi: 10.1109/ICASSP. 2014.6854565. HE Q, Blum R, and RAWAS Z. Ordering for energy efficient communications for noncoherent MIMO radar networks[C]. IEEE International Conference on Acoustic, Speech and Signal Processing, Kyoto, 2012: 5189-5192. doi: 10.1109/ ICASSP.2012.6289089. SCHARRENBROICH M, ZATMAN M, and BALAN R. Cooperative radar techniques: the two-step detector[C]. Conference Record of the 45th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2011: 1975-1979. doi: 10.1109/ACSSC.2011.6190370. SCHARRENBROICH M, ZATMAN M, and BALAN R. Performance of a practical two-step detector for non- fluctuating targets[C]. IEEE 7th Workshop on Sensor Array and Multichannel Signal Processing, Hoboken, 2012: 313-316. doi: 10.1109/SAM.2012.6250498. KELLY E. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127. doi: 10.1109/TAES.1986.310745. ROBEY F, FUHRMANN D, KELLY E, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. doi: 10.1109/7.135446. CHRISTIAN W. Hand-book on Statistical Distributions for Experimentalists[M]. Stockholm: University of Stockholm, 2007: 133-133. RAMSAY C M. The distribution of sums of certain I.I.D Pareto variates[J]. Communications in Statistics-Theory and Methods, 2006, 35(1): 395-405. doi: 10.1080/03610920500 476325. MATHUR A and WILLETT P K. Local SNR consideration in decentralized CFAR detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 13-22. doi: 10.1109/7.640257. DONALD P B and NATHAN A G. Adaptive detection and diversity order in multistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1615-1623. doi: 10.1109/TAES.2008.4667736. -
計(jì)量
- 文章訪問數(shù): 1744
- HTML全文瀏覽量: 202
- PDF下載量: 426
- 被引次數(shù): 0