基于卡通紋理模型的相位恢復(fù)算法
doi: 10.11999/JEIT151156
基金項(xiàng)目:
國家自然科學(xué)基金(61471313),河北省自然科學(xué)基金(F2014203076)
Phase Retrieval Algorithm Based on Cartoon-texture Model
Funds:
The National Natural Science Foundation of China (61471313), The Natural Science Foundation of Hebei Province (F2014203076)
-
摘要: 相位恢復(fù)是指僅利用圖像的傅里葉幅值對原始圖像進(jìn)行恢復(fù)。由于傅里葉幅值中包含的信息量較少,當(dāng)圖像的過采樣率相對較低時(shí),傳統(tǒng)的相位恢復(fù)算法無法實(shí)現(xiàn)圖像的有效重構(gòu)。因此如何利用合適的先驗(yàn)知識來提高圖像重構(gòu)質(zhì)量是相位恢復(fù)的一個(gè)關(guān)鍵問題。該文將卡通-紋理模型用于相位恢復(fù),利用全變差(TV)和雙樹復(fù)數(shù)小波(DTCWT)兩種稀疏表示方法將圖像分解為卡通成分和紋理成分,并提出了基于交替方向乘子法(ADMM)的有效求解算法。實(shí)驗(yàn)結(jié)果表明,該算法能有效提高圖像重構(gòu)質(zhì)量。
-
關(guān)鍵詞:
- 圖像處理 /
- 相位恢復(fù) /
- 卡通-紋理模型 /
- 全變差 /
- 雙樹復(fù)數(shù)小波
Abstract: Phase retrieval is an issue that tries to recover an image from its Fourier magnitude measurements. Since the Fourier magnitude measurements contain less information, the traditional phase retrieval algorithms can not reconstruct the image efficiently under the scenario that the oversampling ratio is relatively low. Therefore, how to use the suitable image priors to improve the reconstruction quality of the image is the key issue. In this paper, the cartoon-texture model is utilized for phase retrieval algorithm. Two sparse representation methods including both Total Variation (TV) and Dual-Tree Complex Wavelet Transform (DTCWT) are exploited to decompose the image into two parts, namely the cartoon component and the texture component. Moreover, Alternating Direction Method of Multipliers (ADMM) is exploited to solve the corresponding problem. The experimental results show that the proposed algorithm can effectively improve the quality of image reconstruction. -
SHECHTMAN Y, ELDAR Y C, COHEN O, et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109. doi: 10.1109/MSP.2014.2352673. WANG Xiaogang, CHEN Wen, and CHEN Xudong. Optical encryption and authentication based on phase retrieval and sparsity constraints[J]. IEEE Photonics Journal, 2015, 7(2): 1-10. doi: 10.1109/JPHOT.2015.2412936. ELDAR Y C, SIDORENKO P, MIXON D G, et al. Sparse phase retrieval from short-time Fourier measurements[J]. IEEE Signal Processing Letters, 2015, 22(5): 638-642. doi: 10.1109/LSP.2014.2364225. 戎路, 王大勇, 王云新, 等. 同軸數(shù)字全息中的相位恢復(fù)算法[J]. 中國激光, 2014, 41(2): 55-64. doi: 10.3788/cj1201441. 0209006. RONG Lu, WANG Dayong, WANG Yunxin, et al. Phase retrieval methods in in-line digital holography[J].Chinese Journal of Lasers, 2014, 41(2): 55-64. doi: 10.3788/cj1201441. 0209006. MIAO J, SAYRE D, and CHAPMAN H N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects[J]. Journal of the Optical Society of America A, 1998, 15(6): 1662-1669. doi: 10.1364/JOSAA.15.001662. GERCHBERG R W and SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-250. 楊國楨, 顧本源. 光學(xué)系統(tǒng)中振幅和相位的恢復(fù)問題[J]. 物理學(xué)報(bào), 1981, 30(3): 410-413. YANG Guozhen and GU Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413. FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/A0.21. 002758. ELSER V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55. doi: 10.1364/JOSAA.20.000040. 程鴻, 章權(quán)兵, 韋穗. 基于整體變分的相位恢復(fù)[J]. 中國圖象圖形學(xué)報(bào), 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007. CHENG Hong, ZHANG Quanbing, and WEI Sui. Phase retrieval based on total variation[J]. Journal of Image and Graphics, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007. 楊振亞, 鄭楚君. 基于壓縮傳感的純相位物體相位恢復(fù)[J]. 物理學(xué)報(bào), 2013, 62(10): 104203. doi: 10.7498/aps.62.104203. YANG Zhenya and ZHENG Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203. CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 89-97. doi: 10.1023/ B:JMIV.0000011325.36760.1e. SHECHTMAN Y, BECK A, and ELDAR Y C. GESPAR: Efficient phase retrieval of sparse signals[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 928-938. doi: 10.1109/TSP.2013.2297687. SCHNITER P and RANGAN S. Compressive phase retrieval via generalized approximate message passing[J]. IEEE Transactions on Signal Processing, 2015, 63(4): 1043-1055. doi: 10.1109/Allerton.2012.6483302. KINGSBURY N G. Complex wavelets for shift invariant analysis and filtering of signals[J]. Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253. doi: 10.1006/acha. 2000.0343. MEYER Y. Oscillating Patterns in Image Processing and Non-Linear Evolution Equations[M]. Boston: University Lecture Series, American Mathematical Society, 2001: 23-78. BAUSCHKE H H, COMBETTES P L, and LUKE D R. Hybrid projection-reflection method for phase retrieval[J]. Journal of the Optical Society of America A, 2003, 20(6): 1025-1034. doi: 10.1364/JOSAA.20.001025. CHI J N and ERAMIAN M. Enhancement of textural differences based on morphological component analysis[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2671-2684. doi: 10.1109/TIP.2015.2427514. ZHANG Zhengrong, ZHANG Jun, WEI Zhihui, et al. Cartoon-texture composite regularization based non-blind deblurring method for partly-textured blurred images with Poisson noise[J]. Signal Processing, 2015, 116(11): 127-140. doi: 10.1016/j.sigpro.2015.04.020. GOLDSTEIN T and OSHER S. The split bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343. doi: 10.1137/080725891. DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. doi: 10.1109/18.382009. BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122. doi: 10.1561/2200000016. WANG Yilun, YIN Wotao, and ZHANG Yin. A fast algorithm for image deblurring with total variation regularization[R]. CAAM Technical Report TR07-10, Rice University, Houston, 2007. GLOWINSKI R. Lectures on Numerical Methods for Non-Linear Variational Problems[M]. Berlin: Bombay Springer-Verlag, 1980: 200-214. WANG Z H, BOVIK A C, and SHEIKH H R. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. RODRIGUEZ J A, XU Rui, CHEN Chienchun, et al. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities[J]. Journal of Applied Crystallography, 2013, 46(2): 312-318. doi: 10.1107/ S0021889813002471. -
計(jì)量
- 文章訪問數(shù): 1378
- HTML全文瀏覽量: 105
- PDF下載量: 596
- 被引次數(shù): 0