基于RankClus算法的機(jī)場(chǎng)流程日志活動(dòng)挖掘
doi: 10.11999/JEIT151137
-
2.
(中國(guó)民航大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院 天津 300300) ②(中國(guó)民航信息技術(shù)科研基地 天津 300300)
國(guó)家自然科學(xué)基金(61502499),中國(guó)民航科技創(chuàng)新引導(dǎo)資金項(xiàng)目重大專項(xiàng)(MHRD20140105),中央高??蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(3122013C005, 3122014D032, 3122015D015),中國(guó)民航大學(xué)科研基金(2013QD18X),中國(guó)民航信息技術(shù)科研基地開放課題基金(CAAC-ITRB-201401)
Activity Mining for Airport Event Logs Based on RankClus Algorithm
-
2.
(College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China)
The National Natural Science Foundation of China (61502499), The Civil Aviation Key Technologies RD Program of China (MHRD20140105), The Fundamental Research Funds for the Central Universities of China (3122013C005, 3122014D032, 3122015D015), The Scientific Research Foundation from Civil Aviation University of China (2013QD18X), The Open Project Foundation of Information Technology Research Base of Civil Aviation Administration of China (CAAC-ITRB-201401)
-
摘要: 流程挖掘技術(shù)可以提取機(jī)場(chǎng)流程日志中的有用信息用于流程分析。但機(jī)場(chǎng)流程日志處于細(xì)節(jié)化的低抽象層次,不符合分析者的預(yù)期。對(duì)機(jī)場(chǎng)流程日志挖掘得到的流程模型呈現(xiàn)意面狀的復(fù)雜結(jié)構(gòu),流程模型的含義難于理解。解決該問(wèn)題的一種方法是通過(guò)活動(dòng)挖掘,將低抽象層次活動(dòng)聚類為流程模型中表征高抽象層次活動(dòng)的活動(dòng)類簇。為此提出了一種基于RankClus算法的活動(dòng)挖掘方法,將機(jī)場(chǎng)流程日志的活動(dòng)聚類與活動(dòng)排序評(píng)分計(jì)算相結(jié)合,從而構(gòu)建更易理解的活動(dòng)聚類流程模型。實(shí)驗(yàn)結(jié)果表明,RankClus活動(dòng)聚類流程模型的日志回放一致性與原生日志流程模型大致相當(dāng),但在結(jié)構(gòu)復(fù)雜度上要顯著低于原生日志流程模型。
-
關(guān)鍵詞:
- 流程挖掘 /
- 活動(dòng)挖掘 /
- RankClus /
- 蹤跡聚類
Abstract: Process mining is a technology which can extract non-trivial and useful information from airport event logs. However, the airport event logs are always on a detailed level of abstraction, which may not be in line with the expected abstract level of an analyst. Process models generated by these event logs are always spaghetti-like and too hard to comprehend. An approach to overcome this issue is to group low-level events into clusters, which represent the execution of a higher-level activity in the process model. Therefore, this paper presents a new activity mining method which is based on RankClus algorithm to generate activity clusters integrated with ranking. On this basis, the activity-clustered model which is easier to comprehend can be constructed. The experiment results show that this activity-clustered model, which shares a similar level of conformance with the meta model, is significantly less complex.-
Key words:
- Process mining /
- Activity mining /
- RankClus /
- Trace clustering
-
VAN DER AALST W M P. Process mining: Overview and opportunities[J]. ACM Transactions on Management Information Systems, 2012, 3(2): 1-17. doi: 10.1145/2229156. 2229157. LANZ A, WEBER B, and REICHERT M. Time patterns for process-aware information systems[J]. Requirements Engineering, 2014, 19(2): 113-141. doi: 10.1007/s00766-012- 0162-3. BOSE R P J C, VAN DER AALST W M P, ZLIOBAITE I, et al. Dealing with concept drifts in process mining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 154-171. doi: 10.1109/TNNLS.2013.2278313. GNTHER C W, ROZINAT A, and VAN DER AALST W M P. Activity mining by global trace segmentation[C]. Proceedings of the 8th International Conference on Business Process Management, Hoboken, 2010: 128-139. doi: 10.1007/ 978-3-642-12186-9_13. DESAI N, BHAMIDIPATY A, SHARMA B, et al. Process trace identification from unstructured execution logs[C]. Proceedings of the 7th International Conference on Services Computing, Miami, 2010: 17-24. doi: 10.1109/SCC.2010.86. BAIER T, MENDLING J, and WESKE M. Bridging abstraction layers in process mining[J]. Information Systems, 2014, 46(12): 123-139. doi: 10.1016/j.is.2014.04.004. SONG M, GNTHER C W, and VAN DER AALST W M P. Trace clustering in process mining[C]. Proceedings of the 7th International Conference on Business Process Management, Ulm, 2009: 109-120. doi: 10.1007/978-3-642-00328-8_11. BOSE R P J C and VAN DER AALST W M P. Context aware trace clustering: towards improving process mining results[C]. Proceedings of the 2009 SIAM Data Mining Conference, Sparks, 2009: 401-412. doi: 10.1137/1. 9781611972795.35. BOSE R P J C and VAN DER AALST W M P. Trace clustering based on conserved patterns: Towards achieving better process models[C]. Proceedings of the 8th International Conference on Business Process Management, Hoboken, 2010: 170-181. doi: 10.1007/978-3-642-12186-9_16. SUN Y, HAN J, ZHAO P, et al. Rankclus: integrating clustering with ranking for heterogeneous information network analysis[C]. Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, Saint-Petersburg, 2009: 565-576. doi: 10.1145/1516360.1516426. FERREIRA D R, SZIMANSKI F, and RALHA C G. Improving process models by mining mappings of low-level events to high-level activities[J]. Journal of Intelligent Information Systems, 2014, 43(2): 379-407. doi: 10.1007/ s10844-014-0327-2. SHAN S, WANG L, and LI L. Modeling of emergency response decision-making process using stochastic Petri net: an e-service perspective[J]. Information Technology and Management, 2012, 13(4): 363-376. doi: 10.1007/s10799- 012-0128-7. 陳季夢(mèng), 陳佳俊, 劉杰, 等. 基于結(jié)構(gòu)相似度的大規(guī)模社交網(wǎng)絡(luò)聚類算法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 449-454. doi: 10.11999/JEIT140512. CHEN Jimeng, CHEN Jiajun, LIU Jie, et al. Clustering algorithms for large-scale social networks based on structural similarity[J]. Journal of Electronics Information Technology, 2015, 37(2): 449-454. doi: 10.11999/JEIT140512. 陳麗敏, 楊靜, 張健沛. 一種基于嵌入技術(shù)的異構(gòu)信息網(wǎng)絡(luò)的快速聚類算法[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106. CHEN Limin, YANG Jing, and ZHANG Jianpei. A fast clustering algorithm based on embedding technology for heterogeneous information networks[J]. Journal of Electronics Information Technology, 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106. LEEMANS S J J, FAHLAND D, and VAN DER AALST W M P. Discovering block-structured process models from event logs containing infrequent behaviour[C]. Proceedings of the 11th International Conference on Business Process Management, Eindhoven, 2014: 66-78. doi: 10.1007/978-3- 319-06257-0_6. GRABBE S R, SRIDHAR B, and MUKHERJEE A. Clustering days with similar airport weather conditions[C]. Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, 2014: 2014-2712. doi: 10.2514/6.2014-2712. JOHNSTONE M, LE V T, ZHANG J, et al. A dynamic time warped clustering technique for discrete event simulation- based system analysis[J]. Expert Systems with Applications, 2015, 42(21): 8078-8085. doi: 10.1016/j.eswa.2015.06.040. ADRIANSYAH A, SIDOROVA N, and VAN DONGEN B F. Cost-based fitness in conformance checking[C]. Proceedings of the 11th International Conference on Application of Concurrency to System Design, Kanazawa, 2011: 57-66. doi: 10.1109/ACSD.2011.19. -
計(jì)量
- 文章訪問(wèn)數(shù): 1450
- HTML全文瀏覽量: 165
- PDF下載量: 874
- 被引次數(shù): 0