一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

雷達(dá)高分辨率緊湊感知矩陣追蹤算法

劉靜 盛明星 宋大偉 尚社 韓崇昭

劉靜, 盛明星, 宋大偉, 尚社, 韓崇昭. 雷達(dá)高分辨率緊湊感知矩陣追蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 1950-1955. doi: 10.11999/JEIT151135
引用本文: 劉靜, 盛明星, 宋大偉, 尚社, 韓崇昭. 雷達(dá)高分辨率緊湊感知矩陣追蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 1950-1955. doi: 10.11999/JEIT151135
LIU Jing, SHENG Mingxing, SONG Dawei, SHANG She, HAN Chongzhao. Compact Sensing Matrix Pursuit Algorithm for Radars with High Resolution[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1950-1955. doi: 10.11999/JEIT151135
Citation: LIU Jing, SHENG Mingxing, SONG Dawei, SHANG She, HAN Chongzhao. Compact Sensing Matrix Pursuit Algorithm for Radars with High Resolution[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1950-1955. doi: 10.11999/JEIT151135

雷達(dá)高分辨率緊湊感知矩陣追蹤算法

doi: 10.11999/JEIT151135
基金項(xiàng)目: 

CAST創(chuàng)新基金(J20141110),國(guó)家自然科學(xué)基金(61573276),國(guó)家973計(jì)劃(2013CB329405)

Compact Sensing Matrix Pursuit Algorithm for Radars with High Resolution

Funds: 

The Innovation Foundation of CAST (J20141110), The National Natural Science Foundation of China (61573276), The National 973 Program of China (2013CB329405)

  • 摘要: 針對(duì)壓縮感知雷達(dá)的感知矩陣相干系數(shù)隨分辨率增加而增大以致不能以大概率對(duì)稀疏向量進(jìn)行完美重構(gòu)的問(wèn)題,直接基于原始感知矩陣,提出緊湊感知矩陣追蹤(CSMP)算法。該文將CSMP算法應(yīng)用于十字陣?yán)走_(dá)的2維波達(dá)方向(DOA)估計(jì)并進(jìn)行了計(jì)算機(jī)仿真。仿真結(jié)果表明與多信號(hào)分類(lèi)(MUSIC)算法,子空間追蹤(SP)算法,基追蹤(BP)算法和稀疏貝葉斯學(xué)習(xí)(SBL)算法相比,基于CSMP算法的DOA估計(jì)分辨率得到了較大提高。
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582.
    ZEINALKHANI C and BANIHASHEMI A H. Iterative reweighted l2/l1 recovery algorithms for compressed sensing of block sparse signals[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4516-4531. doi: 10.1109/TSP.2015. 2441032.
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, 2007: 128-133. doi: 10.1109/RADAR.2007.374203.
    BAR-ILAN O and ELDAR Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811. doi: 10.1109/TSP.2014.2304917.
    LI Hongtao, WANG Chaoyu, WANG Ke, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar, Sonar and Navigation, 2015, 9(8): 984-990. doi: 10.1049/iet-rsn.2014. 0454.
    BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185. doi: 10.1215/ 00127094-1384809.
    CHEN C and VAIDYANATHAN P. Compressed sensing in MIMO radar[C]. Asilomar Conference on Signal, Systems and Computers, Piscataway, 2008: 41-44.
    SONG Xiaofeng, ZHOU Shengli, and WILLETT P. The role of the ambiguity function in compressed sensing radar[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, 2010: 2758-2761. doi: 10.1109/ ICASSP.2010.5496221.
    王超宇, 梅湄, 朱曉華, 等. 一種穩(wěn)健的盲稀疏度壓縮感知雷達(dá)目標(biāo)參數(shù)估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 960-966. doi: 10.3724/SP.J.1146.2013.01007.
    WANG Chaoyu, MEI Mei, ZHU Xiaohua, et al. A robust
    blind sparsity target parameter estimation algorithm for compressive sensing radar[J]. Journal of Electronics Information Technology, 2014, 36(4): 960-966. doi: 10.3724/ SP.J.1146.2013.01007.
    KIM Y G and LEE M J. Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization[J]. IEEE Communications Magazine, 2014, 52(1): 122-129.
    SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP. 1986.1143830.
    DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006
    ZHU Hao, GEERT L, and GEORGIOS G. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002-2016. doi: 10.1109/TSP.2011.2109956.
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. doi: 10.1109/TSP.2007.914345.
    EVERITT B, LANDAU S, and LEESE M. Cluster Analysis[M]. London: Edward Arnold, 2001: 121-134.
    DONOHO D L, ELAD M, and TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 51(1): 6-18. doi: 10.1109/TIT.2005.860430.
    林波, 張?jiān)鲚x, 朱炬波. 基于壓縮感知的DOA估計(jì)稀疏化模型與性能分析[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    LIN Bo, ZHANG Zenghui, and ZHU Jubo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146. 2013.00149.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1324
  • HTML全文瀏覽量:  174
  • PDF下載量:  386
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-10-10
  • 修回日期:  2016-04-22
  • 刊出日期:  2016-08-19

目錄

    /

    返回文章
    返回