雷達(dá)高分辨率緊湊感知矩陣追蹤算法
doi: 10.11999/JEIT151135
-
1.
(西安交通大學(xué)電信學(xué)院 西安 710049) ②(空間微波技術(shù)國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室 西安 710000)
CAST創(chuàng)新基金(J20141110),國(guó)家自然科學(xué)基金(61573276),國(guó)家973計(jì)劃(2013CB329405)
Compact Sensing Matrix Pursuit Algorithm for Radars with High Resolution
-
1.
(School of Electronics and Information Engineering, Xi&rsquo
-
2.
(National Key Laboratory of Science and Technology on Space Microwave, Xi&rsquo
The Innovation Foundation of CAST (J20141110), The National Natural Science Foundation of China (61573276), The National 973 Program of China (2013CB329405)
-
摘要: 針對(duì)壓縮感知雷達(dá)的感知矩陣相干系數(shù)隨分辨率增加而增大以致不能以大概率對(duì)稀疏向量進(jìn)行完美重構(gòu)的問(wèn)題,直接基于原始感知矩陣,提出緊湊感知矩陣追蹤(CSMP)算法。該文將CSMP算法應(yīng)用于十字陣?yán)走_(dá)的2維波達(dá)方向(DOA)估計(jì)并進(jìn)行了計(jì)算機(jī)仿真。仿真結(jié)果表明與多信號(hào)分類(lèi)(MUSIC)算法,子空間追蹤(SP)算法,基追蹤(BP)算法和稀疏貝葉斯學(xué)習(xí)(SBL)算法相比,基于CSMP算法的DOA估計(jì)分辨率得到了較大提高。
-
關(guān)鍵詞:
- 壓縮感知雷達(dá)系統(tǒng) /
- 高分辨率 /
- 高相關(guān)性 /
- 緊湊感知矩陣追蹤算法
Abstract: In this paper, a novel algorithm named Compact Sensing Matrix Pursuit (CSMP) is proposed to deal with the high coherence problem encountered in the compressed sensing based radar system with high resolution. The CSMP algorithm is applied to the two dimensional Direction Of Arrival (DOA) estimation of cross-array. The simulation results show that the resolution can be increased largely compared with the MUltiple SIgnal Classification (MUSIC) algorithm, Subspace Pursuit (SP), Basis Pursuit (BP), and the Sparse Bayesian Learning (SBL) algorithms. -
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582. ZEINALKHANI C and BANIHASHEMI A H. Iterative reweighted l2/l1 recovery algorithms for compressed sensing of block sparse signals[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4516-4531. doi: 10.1109/TSP.2015. 2441032. BARANIUK R and STEEGHS P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, 2007: 128-133. doi: 10.1109/RADAR.2007.374203. BAR-ILAN O and ELDAR Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811. doi: 10.1109/TSP.2014.2304917. LI Hongtao, WANG Chaoyu, WANG Ke, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar, Sonar and Navigation, 2015, 9(8): 984-990. doi: 10.1049/iet-rsn.2014. 0454. BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185. doi: 10.1215/ 00127094-1384809. CHEN C and VAIDYANATHAN P. Compressed sensing in MIMO radar[C]. Asilomar Conference on Signal, Systems and Computers, Piscataway, 2008: 41-44. SONG Xiaofeng, ZHOU Shengli, and WILLETT P. The role of the ambiguity function in compressed sensing radar[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, 2010: 2758-2761. doi: 10.1109/ ICASSP.2010.5496221. 王超宇, 梅湄, 朱曉華, 等. 一種穩(wěn)健的盲稀疏度壓縮感知雷達(dá)目標(biāo)參數(shù)估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 960-966. doi: 10.3724/SP.J.1146.2013.01007. WANG Chaoyu, MEI Mei, ZHU Xiaohua, et al. A robust blind sparsity target parameter estimation algorithm for compressive sensing radar[J]. Journal of Electronics Information Technology, 2014, 36(4): 960-966. doi: 10.3724/ SP.J.1146.2013.01007. KIM Y G and LEE M J. Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization[J]. IEEE Communications Magazine, 2014, 52(1): 122-129. SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP. 1986.1143830. DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006 ZHU Hao, GEERT L, and GEORGIOS G. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002-2016. doi: 10.1109/TSP.2011.2109956. JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. doi: 10.1109/TSP.2007.914345. EVERITT B, LANDAU S, and LEESE M. Cluster Analysis[M]. London: Edward Arnold, 2001: 121-134. DONOHO D L, ELAD M, and TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 51(1): 6-18. doi: 10.1109/TIT.2005.860430. 林波, 張?jiān)鲚x, 朱炬波. 基于壓縮感知的DOA估計(jì)稀疏化模型與性能分析[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149. LIN Bo, ZHANG Zenghui, and ZHU Jubo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146. 2013.00149. -
計(jì)量
- 文章訪問(wèn)數(shù): 1324
- HTML全文瀏覽量: 174
- PDF下載量: 386
- 被引次數(shù): 0