結(jié)合PLS表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤
doi: 10.11999/JEIT151082
基金項(xiàng)目:
國家自然科學(xué)基金(61501470)
Object Optimization Tracking via PLS Representation and Stochastic Gradient
Funds:
The National Natural Science Foundation of China (61501470)
-
摘要: 針對實(shí)際視覺跟蹤中目標(biāo)表觀與前背景的非線性變化,論文提出一種基于偏最小二乘分析(PLS)表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤方法。該方法將目標(biāo)跟蹤轉(zhuǎn)化為表示誤差與分類損失的聯(lián)合優(yōu)化問題。首先,為了提高算法對前背景表觀變化的穩(wěn)定性,利用PLS理論的非線性對目標(biāo)區(qū)域的前背景信息進(jìn)行表達(dá),并通過空間聚類構(gòu)造多個(gè)線性外觀模型來描述目標(biāo)區(qū)域的動(dòng)態(tài)變化,建立帶約束條件的表觀特征庫;然后,提出一種確定性搜索機(jī)制,構(gòu)造聯(lián)合優(yōu)化目標(biāo)函數(shù),使表示誤差與分類損失最小化;結(jié)合表觀建模特點(diǎn),構(gòu)建隨機(jī)梯度分類器,對模型進(jìn)行增量特征更新,最終實(shí)現(xiàn)對目標(biāo)的穩(wěn)定準(zhǔn)確跟蹤。經(jīng)多場景對比實(shí)驗(yàn)驗(yàn)證,該算法能有效應(yīng)對目標(biāo)前背景的多種復(fù)雜變化。
-
關(guān)鍵詞:
- 目標(biāo)跟蹤 /
- 偏最小二乘 /
- 表觀模型 /
- 隨機(jī)梯度 /
- 聯(lián)合優(yōu)化
Abstract: In order to improve the stability and accuracy of the object tracking under nonlinear conditions, an object tracking algorithm based on Partial Least Squares (PLS) representation and stochastic gradient object optimization tracking is proposed. In this method, object tracking is defined as an optimization task that minimizes the representation error and classification loss. Firstly, it expresses object appearance and background information by PLS theory, learns multiple low dimensional and discriminative subspaces to describe the nonlinear appearance changes of the object. Then, a joint optimization objective function based on deterministic search mechanism is proposed. Furthermore, an stochastic gradient classifier based on incremental features updating is proposed, and make sure that it can achieve a stable tracking. Experiments show favorable performance of the proposed algorithm on sequences where the targets undergo a variety complex changes on foreground and background. -
YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831. ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(3): 125-141. ZHANG L and VANDER MATTEN L J P. Preserving structure in model-free tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 756-769. ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947. ZHANG S, YAO H, ZHOU H, et al. Robust visual tracking based on online learning sparse representation[J]. Neurocomputing, 2013, 100(1): 31-40. POLING B, LEMAN G, and SZLAM A. Better feature tracking through linear subspace constraints[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, 2014: 3454-3461. GRABNER H, LEISTNER C, and BISCHOF H. Semi- supervised on-line boosting for robust tracking[C]. European Conference on Computer Vision, Crete Greece, 2010: 234-247. BABENKO B, YANG M H, and BELONGIE S. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 983-990. KALAL Z, MATAS J, and MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition, California, 2010: 49-56. WANG Qing, CHEN Feng, XU Wenli, et al. Online discriminative object tracking with local sparse representation[J]. IEEE Workshop on the Applications of Computer Vision, 2012, 12(4): 425-432. CHEN Feng, WANG Qing, WANG Song, et al. Object tracking via appearance modeling and sparse representation [J]. Image and Vision Computing, 2013, 29(11): 787-796. ROSIPAL R and KRAMER N. Overview and recent advances in partial least squares[J]. Latent Structure and Feature Selection, 2010, 18(3): 34-51. HU W, LI W, ZHANG X, et al. Single and multiple object tracking using a multi-feature joint sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4): 816-833. ZOU H and HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B, 2011, 67(2): 301-320. BORDERS A, BOTTOU L, and GALLINARI P. Sgd-qn: careful quasi-newton stochastic gradient descent[J]. The Journal of Machine Learning Research, 2014, 98(10): 1737-1754. WU Y, LIM J, and YANG M H. Object tracking benchmark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. -
計(jì)量
- 文章訪問數(shù): 1256
- HTML全文瀏覽量: 154
- PDF下載量: 328
- 被引次數(shù): 0