一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

結(jié)合PLS表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤

金廣智 石林鎖 劉浩 牟偉杰 蔡艷平

金廣智, 石林鎖, 劉浩, 牟偉杰, 蔡艷平. 結(jié)合PLS表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082
引用本文: 金廣智, 石林鎖, 劉浩, 牟偉杰, 蔡艷平. 結(jié)合PLS表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082
JIN Guangzhi, SHI Linsuo, LIU Hao, MU Weijie, CAI Yanping. Object Optimization Tracking via PLS Representation and Stochastic Gradient[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082
Citation: JIN Guangzhi, SHI Linsuo, LIU Hao, MU Weijie, CAI Yanping. Object Optimization Tracking via PLS Representation and Stochastic Gradient[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082

結(jié)合PLS表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤

doi: 10.11999/JEIT151082
基金項(xiàng)目: 

國家自然科學(xué)基金(61501470)

Object Optimization Tracking via PLS Representation and Stochastic Gradient

Funds: 

The National Natural Science Foundation of China (61501470)

  • 摘要: 針對實(shí)際視覺跟蹤中目標(biāo)表觀與前背景的非線性變化,論文提出一種基于偏最小二乘分析(PLS)表示與隨機(jī)梯度的目標(biāo)優(yōu)化跟蹤方法。該方法將目標(biāo)跟蹤轉(zhuǎn)化為表示誤差與分類損失的聯(lián)合優(yōu)化問題。首先,為了提高算法對前背景表觀變化的穩(wěn)定性,利用PLS理論的非線性對目標(biāo)區(qū)域的前背景信息進(jìn)行表達(dá),并通過空間聚類構(gòu)造多個(gè)線性外觀模型來描述目標(biāo)區(qū)域的動(dòng)態(tài)變化,建立帶約束條件的表觀特征庫;然后,提出一種確定性搜索機(jī)制,構(gòu)造聯(lián)合優(yōu)化目標(biāo)函數(shù),使表示誤差與分類損失最小化;結(jié)合表觀建模特點(diǎn),構(gòu)建隨機(jī)梯度分類器,對模型進(jìn)行增量特征更新,最終實(shí)現(xiàn)對目標(biāo)的穩(wěn)定準(zhǔn)確跟蹤。經(jīng)多場景對比實(shí)驗(yàn)驗(yàn)證,該算法能有效應(yīng)對目標(biāo)前背景的多種復(fù)雜變化。
  • YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
    ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(3): 125-141.
    ZHANG L and VANDER MATTEN L J P. Preserving structure in model-free tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 756-769.
    ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947.
    ZHANG S, YAO H, ZHOU H, et al. Robust visual tracking based on online learning sparse representation[J]. Neurocomputing, 2013, 100(1): 31-40.
    POLING B, LEMAN G, and SZLAM A. Better feature tracking through linear subspace constraints[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, 2014: 3454-3461.
    GRABNER H, LEISTNER C, and BISCHOF H. Semi- supervised on-line boosting for robust tracking[C]. European Conference on Computer Vision, Crete Greece, 2010: 234-247.
    BABENKO B, YANG M H, and BELONGIE S. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 983-990.
    KALAL Z, MATAS J, and MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition, California, 2010: 49-56.
    WANG Qing, CHEN Feng, XU Wenli, et al. Online discriminative object tracking with local sparse representation[J]. IEEE Workshop on the Applications of Computer Vision, 2012, 12(4): 425-432.
    CHEN Feng, WANG Qing, WANG Song, et al. Object tracking via appearance modeling and sparse representation [J]. Image and Vision Computing, 2013, 29(11): 787-796.
    ROSIPAL R and KRAMER N. Overview and recent advances in partial least squares[J]. Latent Structure and Feature Selection, 2010, 18(3): 34-51.
    HU W, LI W, ZHANG X, et al. Single and multiple object tracking using a multi-feature joint sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4): 816-833.
    ZOU H and HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B, 2011, 67(2): 301-320.
    BORDERS A, BOTTOU L, and GALLINARI P. Sgd-qn: careful quasi-newton stochastic gradient descent[J]. The Journal of Machine Learning Research, 2014, 98(10): 1737-1754.
    WU Y, LIM J, and YANG M H. Object tracking benchmark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1256
  • HTML全文瀏覽量:  154
  • PDF下載量:  328
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-09-23
  • 修回日期:  2016-05-10
  • 刊出日期:  2016-08-19

目錄

    /

    返回文章
    返回