基于二進(jìn)制序列族的壓縮感知測量矩陣構(gòu)造
doi: 10.11999/JEIT151076
基金項(xiàng)目:
國家自然科學(xué)基金(61372069),高等學(xué)校學(xué)科創(chuàng)新引智計劃(111計劃)(B08038)
Construction of Compressed Sensing Measurement Matrix Based on Binary Sequence Family
Funds:
The National Natural Science Foundation of China (61372069), The Programme of Introducing Talents of Discipline to Universities (111 Project) (B08038)
-
摘要: 構(gòu)造確定性測量矩陣對壓縮感知理論的推廣與應(yīng)用具有重要的意義。該文源于代數(shù)編碼理論,提出一種基于二進(jìn)制序列族的確定性測量矩陣構(gòu)造算法。相關(guān)性是描述矩陣性質(zhì)的重要準(zhǔn)則,減小相關(guān)性可使重建性能提高。該文推導(dǎo)出所構(gòu)造測量矩陣的相關(guān)性小于同條件下的高斯隨機(jī)矩陣和伯努利隨機(jī)矩陣。理論分析和仿真實(shí)驗(yàn)表明,該方式構(gòu)造的測量矩陣的重建性能優(yōu)于同條件下的高斯隨機(jī)矩陣和伯努利隨機(jī)矩陣;所構(gòu)造矩陣可由線性反饋移位寄存器結(jié)構(gòu)實(shí)現(xiàn),易于硬件實(shí)現(xiàn),有利于壓縮感知理論的實(shí)用化。
-
關(guān)鍵詞:
- 信號處理 /
- 壓縮感知 /
- 測量矩陣 /
- 二進(jìn)制序列族
Abstract: It is significant to construct deterministic measurement matrix for the promotion and application of the Compressed Sensing (CS) theory. Originating from the algebraic coding theory, a construction algorithm of Binary Sequence Family (BSF) based deterministic measurement matrix is presented. The coherence is an important criterion to describe the property of matrices. Lower coherence leads to higher reconstruction performance. The coherence of the proposed measurement matrix is derived to be smaller than the corresponding Gaussian random matrix and Bernoulli random matrix. Theoretical analysis and simulation results show that the proposed matrix can obtain better reconstruction results than the corresponding Gaussian random matrix and Bernoulli random matrix. The proposed matrix can make the hardware realization convenient and easy by means of Linear Feedback Shift Register (LFSR) structures, thus being conductive to practical compressed sensing. -
CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582. CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979. BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185. doi: 10.1215/ 00127094-1384809. GAN H, LI Z, LI J, et al. Compressive sensing using chaotic sequence based on chebyshev map[J]. Nonlinear Dynamics, 2014, 78(4): 2429-2438. doi: 10.1007/s11071-014-1600-1. CASTORENA J and CREUSERE C D. The restricted isometry property for banded random matrices[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 5073-5084. doi: 10.1109/TSP.2014.2345350. ZHANG J, HAN G, and FANG Y. Deterministic construction of compressed sensing matrices from protograph LDPC codes[J]. IEEE Signal Processing Letters, 2015, 22(11): 1960-1964. doi: 10.1109/LSP.2015.2447934. 黨骙, 馬林華, 田雨, 等. m序列壓縮感知測量矩陣構(gòu)造[J].西安電子科技大學(xué)學(xué)報, 2015, 42(2): 186-192. doi: 10.3969/ j.issn.1001-2400.2015.02.031. DANG Kui, MA Linhua, TIAN Yu, et al. Construction of the compressive sensing measurement matrix based on m sequences[J]. Journal of Xidian University, 2015, 42(2): 186-192. doi: 10.3969/j.issn.1001-2400.2015.02.031. 夏樹濤, 劉璐, 劉鑫吉. 基于Berlekamp-Justesen碼的壓縮感知確定性測量矩陣的構(gòu)造[J]. 電子與信息學(xué)報, 2015, 37(4): 763-769. doi: 10.11999/JEIT140875. XIA Shutao, LIU Lu, and LIU Xinji. Deterministic constructions of compressive sensing matrices based on berlekamp-justesen codes[J]. Journal of Electronics Information Technology, 2015, 37(4): 763-769. doi: 10. 11999/JEIT140875. 趙瑞珍, 王若乾, 張鳳珍, 等. 分塊的有序范德蒙矩陣作為壓縮感知測量矩陣的研究[J]. 電子與信息學(xué)報, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860. ZHAO Ruizhen, WANG Ruoqian, ZHANG Fengzhen, et al. Research on the blocked ordered vandermonde matrix used as measurement matrix for compressed sensing[J]. Journal of Electronics Information Technology, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860. ZENG L, ZHANG X, CHEN L, et al. Deterministic construction of toeplitzed structurally chaotic matrix for compressed sensing[J]. Circuits, Systems, and Signal Processing, 2015, 34(3): 797-813. doi: 10.1007/s00034-014- 9873-7. LI S and GE G. Deterministic sensing matrices arising from near orthogonal systems[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2291-2302. doi: 10.1109/ TIT.2014.2303973. MOHADES M M, MOHADES A, and TADAION A. A reed-solomon code based measurement matrix with small coherence[J]. IEEE Signal Processing Letters, 2014, 21(7): 839-843. doi: 10.1109/LSP.2014.2314281. YU N Y and GONG G. A new binary sequence family with low correlation and large size[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1624-1636. doi: 10.1109/ TIT.2006.871062. CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. doi: 10.1137/ S1064827596304010. TROPP J. Greed is good: algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi: 10.1109/TIT.2004.834793. DONOHO D L and ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences of the Unifed States of America, 2003, 100(5): 2197-2202. doi: 10.1073/pnas. 0437847100. HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875. doi: 10.1109/TIT.2010.2070191. -
計量
- 文章訪問數(shù): 2018
- HTML全文瀏覽量: 191
- PDF下載量: 565
- 被引次數(shù): 0