一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于LANDMARC與壓縮感知的雙段式室內(nèi)定位算法

李麗娜 馬俊 龍躍 徐攀峰

李麗娜, 馬俊, 龍躍, 徐攀峰. 基于LANDMARC與壓縮感知的雙段式室內(nèi)定位算法[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050
引用本文: 李麗娜, 馬俊, 龍躍, 徐攀峰. 基于LANDMARC與壓縮感知的雙段式室內(nèi)定位算法[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050
LI Lina, MA Jun, LONG Yue, XU Panfeng. Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050
Citation: LI Lina, MA Jun, LONG Yue, XU Panfeng. Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050

基于LANDMARC與壓縮感知的雙段式室內(nèi)定位算法

doi: 10.11999/JEIT151050
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61403176),遼寧省教育廳科學(xué)技術(shù)研究項(xiàng)目(L2013003)

Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing

Funds: 

The National Natural Science Foundation of China (61403176), Science and Technology Research Project of Educational Commission of Liaoning Province of China (L2013003)

  • 摘要: 鑒于已有室內(nèi)定位算法定位精度與運(yùn)算效率之間的矛盾,該文提出一種將LANDMARC區(qū)域定位與基于模擬退火優(yōu)化正則化正交匹配追蹤(SROMP)的壓縮感知位置估計(jì)相結(jié)合的雙段式定位算法(LANDMARC- SROMP CS)。首先,利用LANDMARC定位算法快速鎖定目標(biāo)所在區(qū)域范圍;在鎖定的區(qū)域內(nèi),再引入壓縮感知理論實(shí)現(xiàn)目標(biāo)位置估計(jì)。此部分,首先根據(jù)鎖定區(qū)域范圍建立虛擬參考標(biāo)簽;然后由新型組合核函數(shù)相關(guān)向量機(jī)算法訓(xùn)練得到室內(nèi)傳播損耗模型,計(jì)算獲得虛擬標(biāo)簽處接收信號(hào)強(qiáng)度值,構(gòu)建測(cè)量矩陣;最后利用SROMP壓縮感知重構(gòu)算法求解出目標(biāo)的位置索引矩陣,對(duì)索引矩陣中的位置相關(guān)點(diǎn)加權(quán)平均得到目標(biāo)的位置信息。實(shí)驗(yàn)結(jié)果表明,所提定位算法平均定位誤差為0.6445 m,算法運(yùn)算效率相對(duì)較高,可以較好地滿足室內(nèi)定位的要求。
  • YANG Ting and ZHU Liping. A review of modern indoor localization systems[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 10-11.
    WU Ling, and HUANG Liya. Improvement of location methods based on RFID[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20(6): 36-41.
    LI Chengtie, WANG Jinkuan, and HAN Yinghua. An efficient compressed sensing-based cross-layer congestion control scheme for wireless sensor networks[C]. Proceedings of IEEE 26th Chinese Control and Decision conference, Shanghai, 2014: 5-6.
    何風(fēng)行, 余志軍, 劉海濤. 基于壓縮感知的無(wú)線傳感器網(wǎng)絡(luò)多目標(biāo)定位算法[J]. 電子與信息學(xué)報(bào), 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405.
    HE Fenghang, YU Zhijun, and LIU Haitao. Multiple target localization via compressed sensing in wireless sensor networks[J]. Journal of Electronics Information Technology, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405.
    MIR Y U, KOPPARAPU V R, and YAND Dongkai. An enhanced K-nearest neighbor algorithm for indoor positioning systems in a WLAN[C]. Proceedings of 2014 IEEE Computers, Communications and IT Applications Conference (ComComAp), Beijing, 2014: 5-8.
    ZHANG Rongbiao, GUO Jianguang, CHU Fuhuan, et al. Environmental-adaptive indoor radio path loss model for wireless sensor networks localization[J]. AEU - International Journal of Electronics and Communications, 2011, 65(12): 1023-1031.
    MIHALIS A N, HATICE G, and MAJA P. Output- associative RVM regression for dimensional and continuous emotion prediction[J]. Image and Vision Computing, 2012, 30(3): 186-196.
    趙春暉, 張燚, 王玉磊. 基于小波核主成分分析的相關(guān)向量機(jī)高光譜圖像分類[J]. 電子與信息學(xué)報(bào), 2012, 34(8): 29-32. doi: 10.3724/SP.J.1146.2011.01282.
    ZHAO Chunhui , ZHANG Yi, and WANG Yulei. Relevant vector machine classification of hyperspectral image based on wavelet kernel principal component analysis[J]. Journal of Electronics Information Technology, 2012, 34(8): 29-32. doi: 10.3724/SP.J.1146.2011.01282.
    NURCIHAN C. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks[J]. Journal of African Earth Sciences, 2014, 100(11): 634-644.
    CLMENT D and FRDRIC E M. Stationary max-stable processes with the Markov property[J]. Stochastic Processes and their Applications, 2014, 124(6): 2266-2279.
    唐朝偉, 李超群, 燕凱, 等. 基于LISOMAP的相關(guān)向量機(jī)入侵檢測(cè)模型[J]. 計(jì)算機(jī)應(yīng)用, 2012, 32(9): 2606-2608.
    TANG Chaowei, LI Chaoqun, YAN Kai, et al. Intrusion detection model based on LISOMAP relevant vector machine[J]. Journal of Computer Applications, 2012, 32(9): 2606-2608.
    WANG Li, HU Jianfeng, and LIU Yongwei. Proceedings of an adaptive line search scheme for compressed sensing based on nemirovski's algorithm[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 7-8.
    GHAEDI M, GHAEDI A M, HOSSAINPOUR M, et al. Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study[J]. Journal of Industrial and Engineering Chemistry, 2014, 25(4): 1641-1649.
    李蘊(yùn)華. 壓縮感知框架下基于ROMP 算法的圖像精確重構(gòu)[J]. 計(jì)算機(jī)應(yīng)用, 2011, 31(10): 2714-2716.
    LI Yunhua. Precise image reconstruction based on ROMP algorithm in compressive sensing[J]. Journal of Computer Applications, 2011, 31(10): 2714-2716.
    LIN C K Y, Haley K B, and SPARKS C. A comparative study of both standard and adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling problems[J]. European Journal of Operational Research, 1995, 83(2): 330-346.
    OLG A S P, EFSTATHIOS Z, FADY R M, et al. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis[J]. Food Research International, 2013, 50(1): 241-249.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1545
  • HTML全文瀏覽量:  211
  • PDF下載量:  519
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-09-17
  • 修回日期:  2016-03-07
  • 刊出日期:  2016-07-19

目錄

    /

    返回文章
    返回