基于運動參數(shù)非搜索高速機動目標檢測
doi: 10.11999/JEIT151042
基金項目:
國家自然科學基金(61001204),中央高?;究蒲袠I(yè)務費專向資金(JY0000902020)
High-speed Maneuvering Target Detection Based on Non-searching Estimation of Motion Parameters
Funds:
The National Natural Science Foundation of China (61001204), Fundamental Research Funds for the Central Universities (JY0000902020)
-
摘要: 該文提出一種新的高速機動目標檢測與參數(shù)估計算法。首先,通過二階Keystone變換(KT)消除距離頻率與慢時間的二次耦合,并計算對稱瞬時自相關(guān)函數(shù)(SIAF)。其次,對SIAF不同維依次進行尺度逆傅里葉變換(SIFT)、尺度傅里葉變換(SFT)和快速傅里葉變換(FFT)實現(xiàn)能量積累,在新的參數(shù)空間進行峰值檢測得到徑向速度模糊數(shù)和徑向加速度估計值。最后,根據(jù)估計的參數(shù)構(gòu)造補償函數(shù)對距離徙動和多普勒擴散進行補償,并通過KT算法實現(xiàn)目標檢測和距離、模糊徑向速度的估計,結(jié)合補償?shù)膹较蛩俣饶:龜?shù)計算出不模糊徑向速度。 由于不需要進行參數(shù)搜索,并且SIFT和SFT均能通過FFT快速實現(xiàn),因此算法計算量得到大幅度減小。仿真實驗驗證了該算法的有效性。
-
關(guān)鍵詞:
- 目標檢測 /
- 參數(shù)估計 /
- 尺度變換 /
- 對稱瞬時自相關(guān)函數(shù)
Abstract: A novel algorithm for high-speed maneuvering target detection and parameter estimation is proposed. Firstly, the second-order Keystone Transform (KT) is utilized to remove the quadric coupling between the range frequency and the slow time, after that, the Symmetric Instantaneous Autocorrelation Function (SIAF) is calculated. Secondly, in order to achieve energy accumulation, Scaled Inverse Fourier Transform (SIFT), Scaled FT (SFT), and Fast FT (FFT) are successively performed on the different dimensions of the SIAF to obtain a new parameter space, then peak detection is carried out to achieve the estimation of radial velocity ambiguity integer and radial acceleration. Finally, a compensation function is constructed to compensate the range migration and the Doppler spread, then the KT algorithm is employed to realize target detection and the estimation of targets range and ambiguous radial velocity, with the radial velocity ambiguity integer and ambiguous radial velocity, the unambiguous radial velocity can be calculated. Since the brute-force searching procedure is eliminated, moreover, the SIFT and the SFT can be implemented with the FFT operation, the computational complexity of proposed algorithm is greatly reduced. The simulation results demonstrate the effectiveness of the proposed algorithm. -
XING Mengdao, SU Junhai, WANG Genyuan, et al. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 214-224. doi: 10.1109/TAES. 2011.5705671. ZHU Shengqi, LIAO Guisheng, YANG Dong, et al. A new method for radar high-speed maneuvering weak target detection and imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1175-1179. doi: 10.1109/LGRS. 2013.2283887. 問翔, 劉宏偉, 包敏. 一種距離擴展目標的Hough變換檢測器[J]. 電子與信息學報, 2015, 37(5): 1104-1110. doi: 10.11999/ JEIT14069. WEN Xiang, LIU Hongwei, and BAO Min. A Hough transformation detector for range spread target[J]. Journal of Electronics Information Technology, 2015, 37(5): 1104-1110. doi: 10.11999/JEIT140692. 田超, 文樹梁. 基于非均勻FFT的長時間相參積累算法[J]. 電子與信息學報, 2014, 36(6): 1374-1380. doi: 10.3724/SP.J. 1146.2013.01264. TIAN Chao and WEN Shuliang. A long-term coherent integration algorithm based on non-uniform fast Fourier transform[J]. Journal of Electronics Information Technology, 2014, 36(6): 1374-1380. doi: 10.3724/SP.J.1146. 2013.01264. HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Approach for space-based radar maneuvering target detection and high-order motion parameter estimation[J]. IET Radar, Sonar Navigation, 2015, 9(6): 732-741. doi: 10. 1049/iet-rsn.2014.0192. 鄭紀彬, 朱文濤, 蘇濤, 等. 一種新的高速多目標快速參數(shù)化檢測算法[J]. 電子與信息學報, 2013, 35(2): 381-387. doi: 10. 3724/SP.J.1146.2012.00843. ZHENG Jibin, ZHU Wentao, SU Tao, et al. Novel algorithm for fast parametric detection of high-speed multi-target[J]. Journal of Electronics Information Technology, 2013, 35(2): 381-387. doi: 10.3724/SP.J.1146.2012.00843. XU Jia, Yu Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection I: generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186-1202. doi: 10.1109/TAES.2011. 5751251. CHENG Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 939-953. doi: 10.1109/TSP.2013.2297682. LI Xiaolong, CUI Guolong, YI Wei, et al. Coherent integration for maneuvering target detection based on radon-Lvs distribution[J]. IEEE Signal Processing Letters, 2015, 22(9): 1467-1471. doi: 10.1109/LSP.2015.2390777. L Xiaolei, BI Guoan, WAN Chunru, et al. Lvs distribution: principle, implementation, properties, and performance[J] . IEEE Transactions on Signal Processing, 2011, 59(8): 939-953. doi: 10.1109/TSP.2011.2155651. LUO Shan, BI Guoan, L Xiaolei, et al. Performance analysis on Lvs distribution and its applications[J]. Digital Signal Processing, 2013, 23(3): 797-807. doi: 10.1016/j.dsp.2012. 11.011. ZHENG Jibin, SU Tao, ZHU Wentao, et al. Radar high-speed target detection based on the scaled inverse Fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1108-1119. doi: 10.1109/JSTARS.2014.2368174. 吳兆平, 符渭波, 蘇濤, 等. 基于快速Radon-Fourier變換的雷達高速目標檢測[J]. 電子與信息學報, 2012, 34(8): 1866-1871. doi: 10.3724/SP.J.1146.2011.01180. WU Zhaoping, FU Weibo, SU Tao, et al. High speed radar target detection based on fast radon-Fourier transform[J]. Journal of Electronics Information Technology, 2012, 34(8): 1866-1871. doi: 10.3724/SP.J.1146.2011.01180. ZHENG Jibin, SU Tao, ZHANG Long, et al. ISAR imaging of targets with complex motion based on the chirp rate- quadratic chirp rate distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7276-7289. doi: 10.1109/TGRS.2014.2310474. XING M, WU R, LI Y, et al. New ISAR imaging algorithm based on modified Wigner Ville distribution[J]. IET Radar, Sonar Navigation, 2009, 3(1): 70-80. doi: 10. 1049/iet-rsn. 20080003. -
計量
- 文章訪問數(shù): 1440
- HTML全文瀏覽量: 135
- PDF下載量: 499
- 被引次數(shù): 0