基于柯西分布的跳頻信號(hào)參數(shù)最大似然估計(jì)方法
doi: 10.11999/JEIT151029
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61201286),陜西省自然科學(xué)基金(2014JM8304),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(K5051202013)
Maximum-likelihood Estimation for Frequency-hopping Parameters by Cauchy Distribution
Funds:
The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province of China (2014JM8304), The Fundamental Research Funds for the Central Universities (K5051202013)
-
摘要: 該文針對(duì)傳統(tǒng)的跳頻信號(hào)參數(shù)估計(jì)方法在alpha穩(wěn)定分布噪聲下性能嚴(yán)重退化的問(wèn)題,引入基于柯西分布的最大似然估計(jì)方法。將跳頻信號(hào)分解到由信號(hào)包絡(luò)參數(shù)和頻率參數(shù)構(gòu)成的2維平面,基于柯西分布建立最大似然函數(shù),在抑制alpha穩(wěn)定分布噪聲的同時(shí),直接對(duì)信號(hào)的頻率參數(shù)進(jìn)行估計(jì)。在構(gòu)建的最大似然函數(shù)基礎(chǔ)上,該方法依據(jù)跳頻信號(hào)的短時(shí)平穩(wěn)性,對(duì)信號(hào)進(jìn)行加窗,有效獲得信號(hào)的跳頻頻率及其跳變次序,進(jìn)而實(shí)現(xiàn)對(duì)信號(hào)的跳變時(shí)刻和跳頻周期等參數(shù)的估計(jì)。仿真結(jié)果表明,在alpha穩(wěn)定分布噪聲環(huán)境中,相比基于分?jǐn)?shù)低階統(tǒng)計(jì)量及基于Myriad濾波的時(shí)頻分析方法,該文所提方法提高了跳頻信號(hào)的參數(shù)估計(jì)精度,具有良好的穩(wěn)健性。
-
關(guān)鍵詞:
- alpha穩(wěn)定分布噪聲 /
- 最大似然估計(jì) /
- 跳頻信號(hào) /
- 參數(shù)估計(jì) /
- 2維平面
Abstract: In view that conventional methods for Frequency Hopping (FH) signal parameter estimation suffer from performance degradation in alpha stable noise environment, the Cauchy based maximum likelihood estimation method is introduced in this paper. The FH signal is decomposed into the two-dimensional envelope versus frequency plane, and then a maximum-likelihood function based on Cauchy distribution is established to extract the frequency parameter directly. For the short-time stationarity of FH signals, the maximum-likelihood function is windowed in order to estimate the specific values and sequence of frequency-hopping, after that the hopping timing and the duration can be estimated. Simulation results show that compared with the fractional lower order statistics as well as the Myriad filter based time frequency analysis methods, the proposed method improves the estimation accuracy of FH signal parameters and is robust to the alpha stable distribution noise. -
ZHAO Lifan, WANG Lu, BI Guoan, et al. Robust frequency-hopping spectrum estimation based on sparse bayesian method[J]. IEEE Transactions on Wireless Communications, 2014, 14(2): 781-793. ZHONG X, PREMKUMAR A B, and MADHUKUMAR A S. Particle filtering for acoustic source tracking in impulsive noise with alpha-stable process[J]. IEEE Sensors Journal, 2013, 13(2): 589-600. CHAVALI V G and DA Silva C R C M. Detection of digital amplitude-phase modulated signals in symmetric alpha-stable noise[J]. IEEE Transactions on Communications, 2012, 60(11): 3365-3375. PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195. TANG Yong, XIONG Xingzhong, and ZHONG Lili. Time-delay estimation based on fractional lower order statistics[C]. Wireless Communication and Sensor Network (WCSN), Wuhan, 2014: 50-55. KATKOVNIK V. Robust M-periodogram[J]. IEEE Transactions on Signal Processing, 1998, 46(11): 3104-3109. CHAVALI V G and DA Silva C R C M. Comparison analysis of myriad estimator calculation algorithms[C]. Conference on Embedded Computing, Budva, 2014: 240-243. YUE B B, PENG Z M, HE Y M, et al. Impulsive noise suppression using fast myriad filter in seismic signal processing[C]. Proceedings of the the 5th International Conference on Computational and Information Sciences, Shiyan, 2013, 6: 1001-1004. 趙新明, 金艷, 姬紅兵. 穩(wěn)定分布噪聲下基于Merid濾波的跳頻信號(hào)參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2014, 36(8): 1878-1883. doi: 10.3724/SP.J.1146.2014.01436. ZHAO Xinming, JIN Yan, and JI Hongbing. Parameter estimation of frequency-hopping signals based on Merid filter in stable noise environment[J]. Journal of Electronics Information Technology, 2014, 36(8): 1878-1883. doi: 10.3724/SP.J.1146.2014.01436. KURKIN D, ROENKO A, LUKIN V, et al. An adaptive meridian estimator[C]. IEEE Microwaves, Radar and Remote Sensing Symposium, Kiev, 2011: 301-304. AALO V A, PEPPAS K P, EFTHYMOGLOU G, et al. Evaluation of average bit error rate for wireless networks with alpha-stable interference[J]. Electronics Letters, 2014, 50(1): 47-49. 金艷,朱敏,姬紅兵. Alpha穩(wěn)定分布噪聲下基于柯西分布的相位鍵控信號(hào)碼速率最大似然估計(jì)[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180. JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180. 郭瑩. 穩(wěn)定分布環(huán)境下的時(shí)延估計(jì)新方法研究[D]. [博士論文],大連理工大學(xué), 2009. GUO Ying. The study on novel time delay estimation methods based on stable distribution[D]. [Ph.D. dissertation], Dalian University of Technology, 2009. GONZALEZ J G and ARCE G R. Optimality of the Myriad filter in practical impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 438-441. LIM H S, CHUAH T C, and CHUAH H T. On the optimal alpha-k curve of the sample Myriad[J]. IEEE Signal Processing Letters, 2007, 14(8): 545-548. BARANIUK R G and JONES D L. A signal-dependent time-frequency representation: optimal kernel design[J]. IEEE Transactions on Signal Processing, 1993, 41(4): 1589-1602. -
計(jì)量
- 文章訪問(wèn)數(shù): 1999
- HTML全文瀏覽量: 118
- PDF下載量: 528
- 被引次數(shù): 0