基于聯(lián)合稀疏性的多視全極化HRRP目標(biāo)識(shí)別方法
doi: 10.11999/JEIT151019
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61471370, 61401479)
Multi-view Polarization HRRP Target Recognition Based on Joint Sparsity
Funds:
The National Natural Science Foundation of China (61471370, 61401479)
-
摘要: 該文考慮利用連續(xù)獲取的多視全極化高分辨距離像(High Range Resolution Profile, HRRP)進(jìn)行目標(biāo)識(shí)別的問(wèn)題。多視全極化HRRP樣本包含了3個(gè)層次的先驗(yàn)信息:樣本內(nèi)各分量來(lái)自同一目標(biāo);單視內(nèi)4種極化組合方式下的HRRP均對(duì)應(yīng)相同的目標(biāo)姿態(tài);相同極化方式下的多視觀測(cè)是相關(guān)的。為有效利用上述信息進(jìn)行目標(biāo)識(shí)別,該文提出一種基于聯(lián)合稀疏表示的多視全極化HRRP目標(biāo)識(shí)別方法。該方法約束各分量對(duì)應(yīng)的稀疏表示系數(shù)共享原子級(jí)的稀疏模式。原子級(jí)稀疏約束使得從各極化字典中選擇來(lái)自相同姿態(tài)的字典原子對(duì)樣本中各分量進(jìn)行稀疏表示,可以有效利用上述3個(gè)層次的先驗(yàn)信息進(jìn)行目標(biāo)識(shí)別。利用目標(biāo)電磁散射數(shù)據(jù)對(duì)所提方法進(jìn)行了驗(yàn)證,結(jié)果表明,該方法具有較好的識(shí)別性能,并且對(duì)噪聲具有良好的魯棒性。
-
關(guān)鍵詞:
- 雷達(dá)目標(biāo)識(shí)別 /
- 多視 /
- 全極化 /
- 高分辨距離像 /
- 聯(lián)合稀疏表示
Abstract: The issue of automatically recognizing a target from its Full-Polarization High Range Resolution Profiles (FPHRRPs) with consecutive observations is considered. The prior information contained in a multi-view FPHRRP sample is hierarchical: all the entries contained in the sample are originated from the same target; the entries within a single view are associated with the same target pose; the multiple views under the same polarization mode are correlated. To utilize efficiently the prior information for target recognition, a novel joint sparse representation based multi-view FPHRRPs target recognition method is proposed. The presented method assumes all the entries within a multi-view FPHRRP sample share a common sparsity pattern in their sparse representation vectors at atom-level, which has the advantage of exploiting the aforementioned information to enhance recognition performance. Experiments are conducted using a synthetic vehicle target dataset. The results show that the proposed method achieves promising recognition accuracy and it is robust with respect to noisy observations. -
LI Hsuehjyh and LANE Rongyuan. Utilization of multiple polarization data for aerospace target identification[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(12): 1436-1441. doi: 10.1109/8.475934. 張瑞, 牛威, 寇鵬. 基于樣本緊密度的雷達(dá)高分辨距離像識(shí)別方法研究[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616. ZHANG Rui, NIU Wei, and KOU Peng. Radar high resolution range profiles recognition based on the affinity[J]. Journal of Electronics Information Technology, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616. WONG S K. High range resolution profiles as motion- Invariant features for moving ground targets identification in SAR-based automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1017-1039. doi: 10.1109/TAES.2009.525 9180. SHAW K, PAUL A S, and WILLAMS R. Eigen-template- based HRR-ATR with multi-look and time-recursion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2369-2385. doi: 10.1109/TAES.2013.6621822. 馮博, 陳渤, 王鵬輝, 等. 利用穩(wěn)健字典學(xué)習(xí)的雷達(dá)高分辨距離像目標(biāo)識(shí)別算法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227. FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227. MA Xiaoshuang, SHEN Huangfeng, YANG Jie, et al. Polarimetric-spatial classification of SAR images based on the fusion of multiple classifiers[J]. IEEE Journal of Selected Topic in Applied Earth Observation and Remote Sensing, 2014, 7(3): 961-971. doi: 10.1109/JSARS2013.2265331. ZHANG Hongsheng, LIN Hui, and LI Yu. Impacts of feature normalization on optical and SAR data fusion for land use/land cover classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1061-1065. doi: 10.1109/LGRS.2014.2377722. CARMINE C, LUCA P, IAN P, et al. Pseudo-Zernike-based multi-pass automatic target recognition from multi-channel synthetic aperture radar[J]. IET Radar, Sonar Navigation, 2015, 9(4): 457-466. doi: 10.1049/iet-rsn.2014.0296. 張玉璽, 王曉丹, 姚旭, 等. 基于H/A/a分解的全極化HRRP目標(biāo)識(shí)別方法[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(12): 2501-2507. doi: 10.3969/j.issn.1001-506X.2013.12.10. ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Target recognition of fully polarimetric HRRP based on H/A/a decomposition[J]. Systems Engineering and Electronics, 2013, 35(12): 2501-2507. doi: 10.3969/j.issn.1001-506X.2013.12.10. 張玉璽, 王曉丹, 姚旭, 等. 基于復(fù)數(shù)全極化HRRP的雷達(dá)目標(biāo)識(shí)別[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(2): 260-265. doi: 10.3969/j.issn.1001-506X.2014.02.10. ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Radar target recognition based on complex fully polarimetric HRRP[J]. Systems Engineering and Electronics, 2014, 36(2): 260-265. doi: 10.3969 /j.issn.1001-506X.2014.02.10. LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi-view radar target recognition based on multitask compressive sensing[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(14): 1917-1934. doi: 10.1080/ 09205071.2015.1067647. CUI Minshan, SAURABH P, MAJID M, et al. Decision fusion of textural features derived from polarimetric data for levee assessment[J]. IEEE Journal of Selected Topic in Applied Earth Observation and Remote Sensing, 2012, 5(3): 970-976. doi: 10.1109/JSTARS.2012. 2195713. DENNIS M B and PAUL G. A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion[J]. IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans, 1997, 27(5): 569-577. doi: 10.1109/3468.618256. DONG Ganggang and KUANG Gangyao. Target recognition via information aggregation through Dempster-Shafers evidence theory[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1247-1251. doi: 10.1109/LGRS.2015.- 2390914. XIAO Jiangjian and SHAH M. Automatic target recognition using multi-view morphing[C]. Proceedings of SPIE, Automatic Target Recognition XIV, Orlando, FL, United States, 2004: 391-399. doi: 10.1117/12.540892. YUAN Xiaotong, LIU Xiaobai, and Yan Shuicheng. Visual classification with multitask joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006. ZHANG Haichao, NASSER M N, ZHANG Yanning, et al. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481-2497. doi: 10.1109/TAES.2012.6237604. TROPP J A, GILBERT A C, and STRAUSS M J. Algorithms for simultaneous sparse approximation Part I: greedy pursuit[J]. EURASIP Journal on Applied Signal Processing, 2006, 86(3): 589-602. doi: 10.1016/j.sigpro.2005.05.030. RAKOTOMAMONJY A. Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms[J]. Signal Processing, 2011, 91(7): 1505-1526. doi: 10.1016/j.sigpro.2011.01.012. JOHN W, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79. CEDRIC L, FRISON P L, CELINE T, et al. Support vector machine for multifrequency SAR polarimetric data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12), 4143-4152. doi: 10.1109/TGRS. 2009.2023908. ZHANG Haichao, NASSER M N, ZHANG Yanning, et al. Joint dynamic sparse representation for multi-view face recognition[J]. Pattern Recognition, 2012, 45(4), 1290-1298. doi: 10.1016/j.patcog.2011.09.009. Kontt E F. A progression of high frequency RCS prediction techniques[J]. Proceedings of the IEEE, 1985, 73(2): 252-264. doi: 10.1109/PROC.1985.13137. LIU Shengqi, ZHAN Ronghui, ZHANG Jun, et al. Radar automatic target recognition based on sequential vanishing component analysis[J]. Progress In Electromagnetics Research, 2014, 145: 241-250. doi: 10.2528/PIER14011608. -
計(jì)量
- 文章訪問(wèn)數(shù): 1530
- HTML全文瀏覽量: 130
- PDF下載量: 491
- 被引次數(shù): 0