基于Kronecker壓縮感知的寬帶MIMO雷達高分辨三維成像
doi: 10.11999/JEIT150995
-
1.
(空軍工程大學防空反導學院 西安 710051) ②(95899部隊 酒泉 735018)
國家自然科學基金(61372166, 61571459),陜西省自然科學基礎研究計劃項目(2014JM8308)
High-resolution 3D Imaging via Wideband MIMO Radar Based on Kronecker Compressive Sensing
-
1.
(Air and Missile Defense College, Air Force Engineering University, Xi&rsquo
-
2.
(Unit 95899 of PLA, Jiuquan 735018, China)
The National Natural Science Foundation of China (61372166, 61571459), The Natural Science Basic Research Plan in Shaanxi Province of China (2014JM8308)
-
摘要: 在寬帶多輸入多輸出(MIMO)雷達3維成像中,MIMO雷達收發(fā)陣元數(shù)量和空間分布的限制會導致圖像的2維橫向分辨率難以滿足實際需求。該文利用壓縮感知(CS)理論來實現(xiàn)圖像在2維橫向上的超分辨??紤]到對信號的每一維分別進行超分辨會損失各維間的耦合信息,提出一種基于Kronecker CS(KCS)的2維聯(lián)合超分辨方法;為解決KCS在多維高分辨應用中存儲量大、計算效率低的問題,進一步提出了一種基于低分辨3維圖像先驗信息的降維KCS方法。仿真和實測數(shù)據(jù)實驗驗證了方法的有效性。
-
關鍵詞:
- 寬帶MIMO雷達 /
- Kronecker壓縮感知 /
- 單次快拍成像 /
- 高分辨3維成像
Abstract: In the Three Dimension (3D) imaging using a wideband Multiple-Input Multiple-Output (MIMO) radar, the resolution in the two cross-range dimensions is usually not satisfactory in practice, limited by the length of the MIMO radar array. In the paper, the Compressive Sensing (CS) theory is applied to realize the super resolution in the two cross-range dimensions. Firstly, a joint two dimensions super resolution method via Kronecker CS (KCS) is proposed, to avoid losing the coupling information among different dimensions, which will happen when the super resolution is just considered in each dimension separately. Then, in order to solve the problem of huge storing and computing burden in KCS, a dimension reduction method is proposed further by utilizing the prior information of the low resolution 3D image. Finally, the validity of the method is verified with simulated data and real measured data experiments. -
張榆紅, 邢孟道, 徐剛. 基于稀疏孔徑的聯(lián)合稀疏約束干涉ISAR機動目標3維成像[J]. 電子與信息學報, 2015, 37(9): 2151-2157. doi: 10.11000/JEIT150125. ZHANG Yuhong, XING Mengdao, and XU Gang. Joint sparsity constraint interferometric ISAR imaging for 3-D geometry of maneuvering targets with sparse apertures[J]. Journal of Electronics Information Technology, 2015, 37(9): 2151-2157. doi: 10.11000/JEIT150125. YANG J C, SU W M, and GU H. 3D imaging using narrowband bistatic MIMO radar[J]. Electronics Letters, 2014, 50(15): 1090-1092. MA C Z, YEO T S, TAN C S, et al. Three-dimensional imaging of targets using colocated MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3009-3021. 朱宇濤, 粟毅. 一種M2發(fā)N2收MIMO雷達陣列及其3維成像方法[J]. 中國科學: 信息科學, 2011, 41(12): 1495-1506. ZHU Yutao and SU Yi. A type of M2-transmitter N2-receiver MIMO radar array and 3D imaging theory[J]. SCIENCE CHINA Information Sciences, 2011, 41(12): 1495-1506. ZHANG Xiaohua, BAI Ting, MENG Hongyun, et al. Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994. WANG Wei, PAN Xiaoyi, LIU Yongcai, et al. Sub-nyquist sampling jamming against ISAR with compressive sensing[J]. IEEE Sensors Journal, 2014, 14(9): 3131-3136. LIU Hongchao, JIU Bo, LIU Hongwei, et al. A novel ISAR imaging algorithm for micromotion targets based on multiple sparse bayesian learning[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1772-1776. WANG Lu, ZHAO Lifan, BI Guoan, et al. Enhanced ISAR imaging by exploiting the continuity of the target scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5736-5750. LIU H C, JIU B, LIU H W, et al. Superresolution ISAR imaging based on sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013. GU F F, CHI L, ZHANG Q, et al. Single snapshot imaging method in multiple-input multiple-output radar with sparse antenna array[J]. IET Radar, Sonar Navigation, 2013, 7(5): 535-543. MA C Z, YEO T S, ZHAO Y B, et al. MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2168-2183. DUARTE M F and BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504. 孟藏珍, 許稼, 王力寶, 等. 基于Clean 處理的MIMO-SAR正交波形分離[J]. 電子與信息學報, 2013, 35(12): 2809-2814. doi: 10.3724/SP.J.1146.2013.00311. MENG Cangzhen, XU Jia, WANG Libao, et al. An orthogonal waveform separation method based on clean processing in MIMO-SAR[J]. Journal of Electronics Information Technology, 2013, 35(12): 2809-2814. doi: 10. 3724/SP.J.1146.2013.00311. BELLETTINI A and PINTO M A. Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase center antenna[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4): 780-789. CANDES E, ROMBERG J, and TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DENG H. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126-3135. -
計量
- 文章訪問數(shù): 1545
- HTML全文瀏覽量: 164
- PDF下載量: 475
- 被引次數(shù): 0