Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR
Funds:
The National Natural Science Foundation of China (61301280, 61301292)
-
摘要: 在局部極坐標系下,快速多級后向投影算法(FFBPA)可以以較低的采樣率對子孔徑成像,但在不同局部極坐標系之間需大量的2維圖像域插值實現(xiàn)圖像融合。相比極坐標系,圖像融合在直角坐標系下更容易實現(xiàn)。但在直角坐標系下進行子孔徑成像的奈奎斯特采樣率較高,這將影響直角坐標系下的成像效率。該文針對此問題提出一種譜壓縮技術,通過對距離時域和距離頻域兩次補償,大幅壓縮了直角坐標系下子孔徑成像的方位譜寬度。該文算法具有堪比原始后向投影算法(BPA)的成像質(zhì)量和優(yōu)于FFBPA的計算效率,且能夠應用于非線性軌道SAR。最后通過星載0.1 m仿真實驗和機載0.2 m實測實驗驗證了算法的有效性。
-
關鍵詞:
- 合成孔徑雷達 /
- 后投影算法 /
- 快速多級后向投影算法 /
- 直角坐標多級后向投影算法
Abstract: The Fast Factorized Back-Projection Algorithm (FFBPA) can reconstruct images in low sampling rate in Local Polar Coordinates (LPC). However, massive 2 dimensional image interpolations are required in image fusion from different LPCs. Image fusion is much easier in Cartesian Coordinates (CC), whereas, the Nyquist sampling rate of images in CC is higher, resulting in decline in the efficiency. To solve this problem, a spectrum compressing method is proposed. By compressing in range-time domain and range-frequency domain, the azimuth spectrum is greatly compressed. The image quality of the proposed method is similar to that of Back-Projection Algorithm (BPA) and is superior to that FFBPA. This method can also be used in SAR of nonlinear track. In the end, the validity of this method is proved by spaceborne SAR simulation data of 0.1 m resolution and airborne SAR real data of 0.2 m resolution. -
保錚, 邢孟道, 王彤. 雷達成像技術[M]. 北京: 電子工業(yè)出版社, 2005: 2-6. BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 2-6. Smith A M. A new approach to range-Doppler SAR processing[J]. International Journal of Remote Sensing, 1991, 12(2): 235-251. doi: 10.1080/01431169108929650. 侯育星, 陳士超, 唐禹, 等. 基于切比雪夫多項式的新形式調(diào)頻變標合成孔徑雷達成像算法[J]. 電子與信息學報, 2014, 36(11): 2646-2651. doi: 10.3724/SP.J.1146.2013.01624. HOU Yuxing, CHEN Shichao, TANG Yu, et al. A new form of chirp scaling algorithm based on Chebyshev polynomials synthetic aperture radar imaging[J]. Journal of Electronics Information Technology, 2014, 36(11): 2646-2651. doi: 10.3724/SP.J.1146.2013.01624. MUNSON D C Jr, OBRIEN J D, and JENKINS W K. A tomographic formulation of spotlight mode synthetic aperture radar[J]. Proceedings of the IEEE, 1983, 72(8): 917-925. doi: 10.1109/PROC.1983.12698. DURAND R, GINOLHAC G, THIRION-LEFEVRE L, et al. Back projection version of subspace detector SAR processors [J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1489-1497. doi: 10.1109/TAES.2011.5751274. 楊軍, 孫光才, 吳玉峰, 等. 基于方位譜分析的斜視TOPS SAR子孔徑成像方法[J]. 電子與信息學報, 2014, 36(4): 923-931. doi: 10.3724/SP.J.1146.2013.00673. YANG Jun, SUN Guangcai, WU Yufeng, et al. A subaperture imaging algorithm for squit TOPS SAR based on SPECAN technique[J]. Journal of Electronics Information Technology, 2014, 36(4): 923-931. doi: 10.3724/SP.J.1146. 2013.00673. YEGULALP A F. Fast back-projection algorithm for synthetic aperture radar[C]. The Record of the 1999 IEEE Radar Conference, Waltham, Massachusetts, 1999, 60-65. doi: 10.1109/NRC.1999.767270. ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace Electronic Systems, 2003, 39(3): 760-776. doi: 10.1109/TAES. 2003. 1238734. ZHANG Lei, LI Haolin, and QIAO Zhijun. A fast BP algorithm with wavenumber spectrum fusion for high- resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1460-1464. doi: 10.1109/LGRS. 2013.2295326. 楊澤民, 孫光才, 吳玉峰, 等. 一種新的基于極坐標格式的快速后向投影算法[J]. 電子與信息學報, 2014, 36(3): 537-544. doi: 10.3724/SP.J.1146.2013.00613. YANG Zemin, SUN Guangcai, WU Yufeng, et al. A new fast back projection algorithm based on polar format algorithm [J]. Journal of Electronics Information Technology, 2014, 36(3): 537-544. doi: 10.3724/SP.J.1146.2013.00613. VU V T, SJOGREN T K, and PETTERSSON M I. SAR imaging in ground plane using fast back-projection for mono- and bistatic cases[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 184-189. doi: 10.1109/RADAR.2012.6212134. WANG R, DENG Y K, LOFFELD O, et al. Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on two-dimensional principle of stationary phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3504-3520. doi: 10.1109/ TGRS.2011.2129573. LI J, ZHANG S, and CHANG J. Bistatic forward-looking SAR imaging based on two-dimensional principle of stationary phase[J]. 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST), Chengdu, 2012: 1-4. doi: 10.1109/ MMWCST.2012.6238129. YANG Zemin, XING Mengdao, ZHANG Lei, et al. A coordinate-transform based FFBP algorithm for high- resolution spotlight SAR imaging[J]. SCIENCE CHINA Information Sciences, 2015, 58(2): 1-11. doi: 10.1007/s11432 -014-5262-x. HANSSEN R and BAMLER R. Evaluation of interpolation kernels for SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 318-321. doi: 10.1109/36.739168. SELVA J and LOPEZ-SANCHEZ J M. Efficient interpolation of SAR images for coregistration in SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 411-415. doi: 10.1109/LGRS.2007.895961. -
計量
- 文章訪問數(shù): 1627
- HTML全文瀏覽量: 152
- PDF下載量: 439
- 被引次數(shù): 0