基于非圓信號(hào)的局部最大功效不變檢驗(yàn)頻譜感知方法
doi: 10.11999/JEIT150974
基金項(xiàng)目:
國家自然科學(xué)基金(61271299),高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃項(xiàng)目(B08038)
A Novel Local Most Powerful Invariant Test Spectrum Sensing Method for Non-circular Signals
Funds:
The National Natural Science Foundation of China (61271299), 111 Project (B08038)
-
摘要: 頻譜感知是認(rèn)知無線電網(wǎng)絡(luò)中關(guān)鍵的一個(gè)環(huán)節(jié),為了保證主用戶不受干擾,要求感知算法必須具有較高的檢測效率和檢測精度。該文主要研究MIMO場景下的頻譜感知問題,利用非圓信號(hào)的特性,提出一種基于局部最大功效不變檢驗(yàn)(LMPIT)的頻譜感知方法。根據(jù)漸近分布理論,推導(dǎo)了所述方法的理論檢測門限。最后,采用蒙特卡洛仿真方法,分別分析了不同信道環(huán)境下該方法的檢測性能,并與相關(guān)的感知算法進(jìn)行對(duì)比。結(jié)果表明:在相同的環(huán)境下,文中提出的方法相比其他方法檢測性能更高,且所需的采樣點(diǎn)數(shù)更小,能夠?qū)崿F(xiàn)快速且精確的檢測。
-
關(guān)鍵詞:
- 認(rèn)知無線電 /
- 頻譜感知 /
- 非圓信號(hào) /
- 局部最大功效不變檢驗(yàn)
Abstract: Spectrum sensing is a key technology in the cognitive radio network, in order to protect the primary user, the sensing algorithms must have a high detection efficiency and detection accuracy. This paper mainly focuses on the spectrum sensing in MIMO environment. Considering that the non-circular signal is usually used in the communication system, a novel spectrum sensing method is proposed for non-circular signals based on the Locally Most Powerful Invariant Test (LMPIT). The theoretical threshold is derived according to the asymptotic distribution theorem. Finally, the detection performance comparisons with other methods in various channels are simulated respectively. The results show that the proposed method outperforms other algorithms and only need small sample numbers, thus having higher sensing accuracy and efficiency. -
AXELL E, LEUS G, LARSSON E G, et al. Spectrum sensing for cognitive radio: State-of-the-art and recent advances[J]. IEEE Signal Processing Magazine, 2012, 29(3): 101-116. YUCEK T and ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys Tutorials, 2009, 11(1): 116-130. ZHU Y, LIU J, FENG Z, et al. Sensing performance of efficient cyclostationary detector with multiple antennas in multipath fading and lognormal shadowing environments[J]. Journal of Communications and Networks, 2014, 16(2): 162-171. SUTTON P D,ZGL B, and DOYLE L E. Cyclostationary signatures for LTE Advanced and beyond[J]. Physical Communication, 2014, 10: 179-189. LIU Y, ZHONG Z, WANG G, et al. Cyclostationary detection based spectrum sensing for cognitive radio networks[J]. Journal of Communications, 2015, 10(1): 74-79. ATAPATTU S, TELLAMBURA C, and JIANG H. Energy Detection for Spectrum Sensing in Cognitive Radio[M]. Berlin: Springer, 2014: 11-26. LI B, SUN M, LI X, et al. Energy detection based spectrum sensing for cognitive radios over time-frequency doubly selective fading channels[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 402-417. GOKCEOGLU A, DIKMESE S, VALKAMA M, et al. Energy detection under iq imbalance with single-and multi- channel direct-conversion receiver: analysis and mitigation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(3): 411-424. ZENG Y and LIANG Y C. Maximum-minimum eigenvalue detection for cognitive radio[C]. Proceedings of IEEE 18th International Symposium on Personal Indoor, Mobile Radio Communication, Athens, 2007: 1-5. LIM T J, ZHANG R, LIANG Y C, et al. GLRT- based spectrum sensing for cognitive radio[C]. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, LO, 2008: 1-5. RAMREZ D, VAZQUEZ-VILAR G, LPEZ-VALCARCE R, et al. Detection of rank-signals in cognitive radio networks with uncalibrated multiple antennas[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3764-3774. HUANG L, SO H C, and QIAN C. Volume-based method for spectrum sensing[J]. Digital Signal Processing, 2014, 28: 48-56. HUANG L, XIAO Y H, and ZHANG Q T. Robust spectrum sensing for noncircular signal in multiantenna cognitive receivers[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 498-511. SCHREIER P J and SCHARF L L. Statistical Signal Processing of Complex-valued Data: the Theory of Improper and Noncircular Signals[M]. New York: Cambridge University Press, 2010: 65-66. RAMIREZ D, VIA J, SANTAMARIA I, et al. Locally most powerful invariant tests for correlation and sphericity of gaussian vectors[J]. IEEE Transactions on Information Theory, 2013, 59(4): 2128-2141. BOX G E P, HUNTER J S, and HUNTER W G. Statistics for Experimenters: Design, Innovation, and Discovery[M]. New York, John Willey, 2005: 46-48. 賈瓊, 李兵兵. 基于局部方差的MIMO頻譜感知算法研究[J].電子與信息學(xué)報(bào), 2015, 37(7): 1525-1530. doi: 10.11999/ JEIT141540. JIA Qiong and LI Bingbing. MIMO Spectrum sensing method based on the local variance[J]. Journal of Electronics Information Technology, 2015, 37(7): 1525-1530. doi: 10.11999/JEIT141540. CHIANI M, WIN M Z, and ZANELLA A. On the capacity of spatially correlated MIMO Rayleigh-fading channels[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2363-2371. -
計(jì)量
- 文章訪問數(shù): 1259
- HTML全文瀏覽量: 137
- PDF下載量: 1079
- 被引次數(shù): 0