基于65 nm工藝的多端口可配置PUF電路設(shè)計(jì)
doi: 10.11999/JEIT150968
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61474068, 61274132),浙江省自然科學(xué)基金(LQ14F040001),浙江省教育廳項(xiàng)目(Y201430798)
Design of Multi-port Configurable PUF Circuit Based on 65 nm Technology
Funds:
The National Natural Science Foundation of China (61474068, 61274132), The Natural Science Foundation of Zhejiang Provice (LQ14F040001), The Project of Department of Education of Zhejiang Provice (Y201430798)
-
摘要: 物理不可克隆函數(shù)(Physical Unclonable Function, PUF)電路利用結(jié)構(gòu)完全相同的電路在制造過(guò)程中存在的隨機(jī)工藝偏差,產(chǎn)生具有唯一性、隨機(jī)性和不可克隆性的密鑰。該文通過(guò)對(duì)共源共柵電流鏡的研究,提出一種基于電流鏡工藝偏差的多端口可配置PUF電路。該P(yáng)UF電路由輸入寄存器、偏差電壓源、復(fù)用網(wǎng)絡(luò)、判決器陣列和擾亂模塊構(gòu)成,通過(guò)激勵(lì)信號(hào)配置偏差電壓源,無(wú)需更換硬件便可實(shí)現(xiàn)輸出密鑰的變化,且可在一個(gè)時(shí)鐘周期內(nèi)輸出多位密鑰。在SMIC 65 nm CMOS工藝下,采用全定制方式設(shè)計(jì)具有36個(gè)輸出端口的PUF電路,版圖面積為24.8 m77.4 m。實(shí)驗(yàn)結(jié)果表明,該P(yáng)UF電路具有良好的唯一性和隨機(jī)性,且工作在不同溫度(-40~125C)和電壓(1.08~1.32 V)下的可靠性均大于97.4%,可應(yīng)用于信息安全領(lǐng)域。
-
關(guān)鍵詞:
- 電路設(shè)計(jì) /
- 物理不可克隆函數(shù) /
- 多端口 /
- 可配置
Abstract: Physical Unclonable Functions (PUF) exploits process variation across the same structure circuits during the manufacturing processes to generate numerous unique, random and unclonable security keys. In this paper, a multi-port configurable PUF scheme is proposed, which is based on random deviation of current mirrors. It consists of input register, deviation-voltage source, multiplexing-net, arbiter array and obfuscation circuit. After configuring deviation-voltage source by applying different input challenges, the PUF circuit updates keys without physically replacement, and it can generate multi-bit keys in a clock cycle. In SMIC 65 nm CMOS technology, the layout of 36 ports configurable PUF occupies 24.8 m77.4 m with custom designing. Experimental results show that the PUF circuit possesses better statistical characteristic of uniqueness and randomness, and it has a high reliability of 97.4% with respect to temperature variation from ?40 C to 125 C, and supply voltage variation from 1.08 V to 1.32 V. It can be effectively used in information security field.-
Key words:
- Circuit design /
- Physical Unclonable Function (PUF) /
- Multi-port /
- Configurable
-
POTKONJAK M and GOUDAR V. Public physical unclonable functions[J]. Proceedings of the IEEE, 2014, 102(8): 1142-1156. doi: 10.1109/JPROC.2014.2331553. HERDER C, YU M D, KOUSHANFA F, et al. Physical unclonable functions and Applications: a tutorial[J]. Proceedings of the IEEE, 2014, 102(8): 1126-1141. doi: 10.1109/JPROC.2014. 2320516. PAPPU R, RECHT R, TAYLOR J, et al. Physical one-way function[J]. Science, 2002, 297(5589): 2026-2030. 項(xiàng)群良, 張培勇, 歐陽(yáng)冬生, 等. 多頻率段物理不可克隆函數(shù)[J]. 電子與信息學(xué)報(bào), 2012, 34(8): 2007-2012. doi: 10.3724/SP.J.1146. 2011.01249. XIANG Qunliang, ZHANG Peiyong, OUYANG Dongsheng, et al. Multiple frequency slots based physical unclonable functions[J]. Journal of Electronics Information Technology, 2012, 34(8): 2007-2012. doi: 10.3724/SP.J.1146.2011.01249. MATHEW S K, SATPATHY S K, ANDERS M A, et al. A 0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22 nm CMOS[C]. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2014: 278-279. LAO Y J and PARHI K. Statistical analysis of MUX-based physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(5): 649-662. doi: 10.1109/TCAD.2013.2296525. SUH G E and DEVADAS S. Physical unclonable functions for device authentication and secret key generation[C]. Proceedings of the Design Automation Conference, San Francisco, 2007: 9-14. GUAJARDO J, KUMAR S S, and CHRIJEN G J. FPGA intrinsic PUF and their use for IP protection[C]. Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems, Vienna, 2007: 63-80. 汪鵬君, 張躍軍, 張學(xué)龍. 防御差分功耗分析攻擊技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2012, 34(11): 2774-2784. doi: 10.3724/SP.J.1146. 2012.00555. WANG Pengjun, ZHANG Yuejun, and ZHANG Xuelong. Research of differential power analysis countermeasures[J]. Journal of Electronics Information Technology, 2012, 34(11): 2774-2784. doi: 10.3724/SP.J.1146.2012.00555. YING S, HOLLEMAN J, and OTIS B P. A digital 1.6 pJ/bit chip identification circuit using process variations[J]. IEEE Journal of Solid-State Circuits, 2008, 41(3): 69-77. doi: 10.1109/JSSC.2007. 910961. BAI C, ZOU X, and DAI K. A novel thyristor-based silicon physical unclonable function[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(1): 290300. doi: 10.1109/TVLSI.2015.2398454. 池保勇. 模擬集成電路與系統(tǒng)[M]. 北京: 清華大學(xué)出版社, 2009: 186-189. CHI Baoyong. Analog Integrated Circuits and Systems[M]. Beijing: Tsinghua University Press, 2009: 186-189. CAO Y, ZHANG L, CHANG C H, et al. A low-power hybrid RO PUF with improved thermal stability for lightweight applications[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1143-1147. doi: 10.1109/TCAD.2015.2424955. GANTA D, VIVEKRAJA V, PRIYA K, et al. A highly stable leakage-based silicon physical unclonable functions[C]. IEEE International Conference on VLSI Design, Madras, 2011: 135-140. KALYANARAMAN M and ORSHANSKY M. Novel strong PUF based on nonlinearity of MOSFET subthreshold operation[C]. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Austin, 2013: 13-18. KUMAR R and BURLESON W. On design of a highly secure PUF based on non-linear current mirrors[C]. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Washington, 2014: 38-43. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1655
- HTML全文瀏覽量: 218
- PDF下載量: 521
- 被引次數(shù): 0