一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于空時(shí)多線索融合的超像素運(yùn)動目標(biāo)檢測方法

宋濤 李鷗 劉廣怡

宋濤, 李鷗, 劉廣怡. 基于空時(shí)多線索融合的超像素運(yùn)動目標(biāo)檢測方法[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950
引用本文: 宋濤, 李鷗, 劉廣怡. 基于空時(shí)多線索融合的超像素運(yùn)動目標(biāo)檢測方法[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950
SONG Tao, LI Ou, LIU Guangyi. Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950
Citation: SONG Tao, LI Ou, LIU Guangyi. Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950

基于空時(shí)多線索融合的超像素運(yùn)動目標(biāo)檢測方法

doi: 10.11999/JEIT150950
基金項(xiàng)目: 

國家科技重大專項(xiàng)(2014ZX03006003)

Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion

Funds: 

National Science and Technology Major Projects of China (2014ZX03006003)

  • 摘要: 運(yùn)動目標(biāo)檢測是計(jì)算機(jī)視覺領(lǐng)域極具挑戰(zhàn)性的難題,該文針對這一問題提出一種基于空時(shí)多線索融合的超像素運(yùn)動目標(biāo)檢測方法。首先利用簡單線性迭代聚類算法將當(dāng)前幀分割為超像素集合,根據(jù)幀間的像素級時(shí)變線索找到當(dāng)前幀中包含運(yùn)動信息的前景超像素子塊;然后根據(jù)運(yùn)動目標(biāo)的一致性原則建立前一幀目標(biāo)模型,結(jié)合目標(biāo)空間線索進(jìn)一步確定包含運(yùn)動目標(biāo)的檢測窗口,將目標(biāo)檢測問題轉(zhuǎn)化為目標(biāo)分割問題,利用密集角點(diǎn)檢測將目標(biāo)從窗口中分割出來。在多個(gè)具有挑戰(zhàn)性的公開視頻序列上同幾種流行檢測算法的實(shí)驗(yàn)對比結(jié)果證明了所提算法的有效性和優(yōu)越性。
  • HU W, TAN T, and WANG L. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(3): 334-352. doi: 10.1109/TSMCC.2004.829274.
    BROX T and MALIK J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(3): 500-513. doi: 10.1109/TPAMI.2010. 143.
    RADKE R J, ANDRA S, and Al-KOFAHI O. Image change detection algorithms: a systematic survey[J]. IEEE Transactions on Image Processing, 2005, 14(3): 294-307. doi: 10.1109/TIP.2004.838698.
    周建英, 吳小培, 張超, 等. 基于滑動窗的混合高斯模型運(yùn)動目標(biāo)檢測方法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
    ZHOU Jianying, WU Xiaopei, ZHANG Chao, et al. A moving object detection method based on sliding window Gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
    VAN D M and BARNICH O. ViBe: a disruptive method for background subtraction[C]. Proceedings of the Background Modeling and Foreground Detection for Video Surveillance, CRC, USA, 2014: 1-23.
    ST-CHARLES P L and BILODEAU G A. Improving background subtraction using local binary similarity patterns[C]. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, 2014: 509-515.
    CHEN Shengyong, ZHANG Jianhua, and LI Youfu. A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction[J]. IEEE Transactions on Industrial Informatics, 2012, 8(1): 118-127. doi: 10.1109/TII.2011.2173202.
    STAUFFER C and GRIMSON W. Adaptive background mixture models for real-time tracking[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, 1999: 246-252.
    EVANGELIO R H, PATZOLD M, and KELLER I. Adaptively splitted GMM with feedback improvement for the task of background subtraction[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 863-874. doi: 10.1109/TIFS.2014.2313919.
    MARTINS P, CASEIRO R, and BATISTA J. Non- parametric Bayesian constrained local models[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 1797-1804.
    BARNICH O and VAN D M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724. doi: 10.1109/TIP.2010.2101613.
    莊哲民, 章聰友, 楊金耀, 等. 基于灰度特征和自適應(yīng)閾值的虛擬背景提取研究[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 346-352. doi: 10.11999/JEIT140317.
    ZHUANG Zhemin, ZHANG Congyou, YANG Jinyao, et al. Investigation on visual background extractor based on gray feature and adaptive threshold[J]. Journal of Electronics Information Technology, 2015, 37(2): 346-352. doi: 10.11999/ JEIT140317.
    ST-CHARLES P, BILODEAU G, and BERGEVIN R. SuBSENSE: a universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2015, 24(1): 359-373. doi: 10.1109/TIP.2014. 2378053.
    MOGHADAM A A, KUMAR M, and RADHA H. Common and Innovative visuals: a sparsity modeling framework for video[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4055-4069. doi: 10.1109/TIP.2014.2321476.
    ALEXE B, DESELAERS T, and FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2189-2202. doi: 10.1109/TPAMI.2012.28.
    ZHANG Luming, XIA Yingjie, JI Rangping, et al. Spatial-aware object-level saliency prediction by learning graphlet hierarchies[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1301-1308. doi: 10.1109/TIE.2014. 2336602.
    LIU Zhi, ZOU Wenbin, and MEUR O L. Saliency tree: a novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937-1952. doi: 10.1109/TIP. 2014.2307434.
    XU Li, JIA Jiaya, and MATSUSHITA Y. Motion detail preserving optical flow estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1744-1757. doi: 10.1109/TPAMI.2011.236.
    LIU Zhi, ZHANG Xiang, LUO Shuhua, et al. Superpixel-based spatiotemporal saliency detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(9): 1522-1540. doi: 10.1109/TCSVT.2014.2308642.
    WU Jianxin and REHG J M. CENTRIST: a visual descriptor for scene categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1489-1501. doi: 10.1109/TPAMI.2010.224.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281. doi: 10.1109/TPAMI.2012.120.
    WANG Yi, JODOIN P M, and PORIKLI F. CDnet 2014: an expanded change detection benchmark dataset[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, 2014: 393-400.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1524
  • HTML全文瀏覽量:  118
  • PDF下載量:  774
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-08-19
  • 修回日期:  2015-12-13
  • 刊出日期:  2016-06-19

目錄

    /

    返回文章
    返回