雜波環(huán)境下基于全鄰模糊聚類的聯(lián)合概率數(shù)據(jù)互聯(lián)算法
doi: 10.11999/JEIT150849
-
1.
(海軍航空工程學(xué)院信息融合研究所 煙臺 264001) ②(北京航空航天大學(xué)電子信息工程學(xué)院 北京 100191)
基金項目:
國家自然科學(xué)基金(61471383)
Joint Probabilistic Data Association Algorithm Based on All-neighbor Fuzzy Clustering in Clutter
-
1.
(Research Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China)
Funds:
The National Natural Science Foundation of China (61471383)
-
摘要: 針對雜波環(huán)境下的多目標(biāo)跟蹤數(shù)據(jù)互聯(lián)問題,該文提出基于全鄰模糊聚類的聯(lián)合概率數(shù)據(jù)互聯(lián)算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering, ANFCJPDA)。該算法根據(jù)確認(rèn)區(qū)域中量測的分布和點跡-航跡關(guān)聯(lián)規(guī)則構(gòu)造統(tǒng)計距離,以各目標(biāo)的預(yù)測位置為聚類中心,利用模糊聚類方法,計算相關(guān)波門內(nèi)候選量測與不同目標(biāo)互聯(lián)的概率,通過概率加權(quán)融合對各目標(biāo)狀態(tài)與協(xié)方差進(jìn)行更新。仿真分析表明,與經(jīng)典的聯(lián)合概率數(shù)據(jù)互聯(lián)算法(Joint Probabilistic Data Association algorithm, JPDA)相比,ANFCJPDA較大程度地改善了算法的實時性,并且跟蹤精度與JPDA相當(dāng)。
-
關(guān)鍵詞:
- 多目標(biāo)跟蹤 /
- 多傳感器 /
- 數(shù)據(jù)互聯(lián) /
- 模糊聚類
Abstract: This paper proposes a new Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering (ANFCJPDA) for mutitarget tracking in the clutter. Firstly, distance measure is established according to measurements distribution in validation area and data correlation rules. Then, the predicted position is set up as a cluster center, and the association probabilities are calculated on the basis of fuzzy clustering, which are used as weights to update targets state and the covariance. Simulation results show that the proposed method reduces highly the computational complexity compared to conventional Joint Probabilistic Data Association (JPDA) technique, and is effective for multiple target tracking in a cluttered environment.-
Key words:
- Multiple target tracking /
- Multisensor /
- Data association /
- Fuzzy clustering
-
SONG T L, KIM H W, and MUSICKI D. Iterative joint integrated probabilistic data association[C]. 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1714-1720. 修建娟, 汪望松, 何友. 雜波環(huán)境下基于距離航速航向信息的多目標(biāo)跟蹤[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(9): 1702-1706. doi: 10.3969/i.issn.1001-506X.2014.09.05. XIU Jianjuan, WANG Wangsong, and HE You. Multiple target tracking in clutter based on distance speed and course[J]. Systems Engineering and Electronics, 2014, 36(9): 1702-1706. doi: 10.3969/i.issn.1001-506X.2014.09.05. MUSICKI D and EVANS R. Multi-scan multi-target tracking in clutter with integrated track splitting filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1432-1447. doi: 10.1109/TAES.2007.4441748. BARSHALOM Y and FORTMAN T E. Tracking and Data Association[M]. New York: Academic Press, 2011: 3-7. PARK C, WOEHL T J, EVANS J E, et al. Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 611-624. doi: 10.1109/TPAMI.2014.2346202. AZIZ A M. A novel all-neighbor fuzzy association approach for tracking in a cluttered environment[J]. Signal Processing, 2011, 91: 2001-2015. doi: doi:10.1016/j.sigpro.2011.03.007. BAE S H and YOON K J. Robust online multiobject tracking with data association and track management[J]. IEEE Transactions on Image Processing, 2014, 23(7): 2820-2833. doi: 10.1109/TIP.2014.2320821. 劉宗香, 謝維信, 黃敬雄. 一種新的基于概率理論的概率數(shù)據(jù)互聯(lián)濾波器[J]. 電子與信息學(xué)報, 2009, 31(7): 1641-1645. LIU Zongxiang, XIE Weixin, and HUNG Jingxiong. A new probabilistic data association filter based on probability theory[J]. Journal of Electronics Information Technology, 2009, 31(7): 1641-1645. BLOM H, BLOEM E, and MUSICKI D. JIPDA: automatic target tracking avoiding track coalescence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 962-974. doi: 10.1109/TAES.2014.130327. 何友, 修建娟, 關(guān)欣. 雷達(dá)數(shù)據(jù)處理及應(yīng)用[M]. 3版, 北京: 電子工業(yè)出版社, 2013: 1-5. HE You, XIU Jianjuan, and GUAN Xin. Radar Data Processing with Applications[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2013: 1-5. AZIZ A M. A new nearest-neighbor association approach based on fuzzy clustering[J]. Aerospace Science and Technology, 2013, 26(1): 87-97. doi: 10.1016/j.ast.2012.02.017. LI Z, CHEN J, GU Y, et al. Small moving infrared space target tracking algorithm based on probabilistic data association filter[J]. Infrared Physics and Technology, 2014, 63: 84-91. doi: 10.1016/j.infrared.2013.12.003. LI Wenling and JIA Yingmin. Distributed interacting multiple model HN filtering fusion for multiplatform maneuvering target tracking in clutter[J]. Signal Processing, 2010, 90(5): 1655-1668. doi: 10.1016/j.sigpro.2009.11.016. KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion: A review of the state-of-the-art[J]. Information Fusion, 2013, 14(1): 28-44. doi: 10.1016/j.inffus. 2011.08.001. 張俊根, 姬紅兵, 蔡紹曉. 基于高斯粒子JPDA濾波的多目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1.1146.2009.01549. ZHANG Jungen, JI Hongbing, and CAI Shaoxiao. Gaussian particle JPDA filter based multi-target tracking[J]. Journal of Electronics Information Technology, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1.1146.2009.01549. JIANG X, HARISHAN K, THAMARASA R, et al. Integrated track initialization and maintenance in heavy clutter using probabilistic data association[J]. Signal Processing, 2014, 94: 241-250. doi: 10.1016/j.sigpro.2013.06. 026. KIM T H, MUSICKI D, SONG T L, et al. Smoothing joint integrated probabilistic data association[J]. IET Radar, Sonar Navigation, 2014, 9(1): 62-66. doi: 10.1049/iet-rsn. 2013.0347. ZHOU B and BOSE N K. Multitarget tracking in clutter: fast algorithms for data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 352-363. doi: 10.1109/7.210074. ROECHER J A and PHILLIS G L. Suboptimal joint probabilistic data association[J]. IEEE Transactions on Aerospace Electronics Systems, 1993, 29(2): 510-517. doi: 10.1109/7. 210087. SVENSSON D, ULMKE M, and HAMMARSTRAND L. Multitarget sensor resolution model and joint probabilistic data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3418-3434. doi: 10.1109/ TAES.2012.6324722. HABTEMARIAN B, THARMARASA R, THAYAPARAN T, et al. A multiple-detection joint probabilistic data association filter[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 461-471. doi: 10.1109/JSTSP.2013.2256772. Li L and XIE W. Intuitionistic fuzzy joint probabilistic data association filter and its application to multitarget tracking [J]. Signal Processing, 2014, 96: 433-444. doi: 10. 1016/j. sigpro.2013.10.011. -
計量
- 文章訪問數(shù): 1774
- HTML全文瀏覽量: 210
- PDF下載量: 439
- 被引次數(shù): 0