基于頻譜感知的業(yè)務(wù)分割-合并的彈性光網(wǎng)絡(luò)資源分配策略
doi: 10.11999/JEIT150842
-
1.
(重慶郵電大學(xué)光纖通信技術(shù)與網(wǎng)絡(luò)重點(diǎn)實(shí)驗(yàn)室 重慶 400065) ②(重慶郵電大學(xué)自動(dòng)化學(xué)院 重慶 400065)
國(guó)家自然科學(xué)基金(61275077),重慶市教委自然科學(xué)基金(KJ1140421)和重慶市科委自然基金(2015jcyjA40024)
Spectrum-aware Traffic Split-Merge Resource Allocation Strategy for Elastic Optical Networks
-
1.
(Key Laboratory of Optical Communications and Networks, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
-
2.
(School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
The National Natural Science Foundation of China (61275077), The Scientific Research Fund of Chongqing Municipal Commission (KJ1140421), The Basic and Frontier Research Program of Chongqing (2015jcyjA40024)
-
摘要: 針對(duì)彈性光網(wǎng)絡(luò)中業(yè)務(wù)分割的資源分配策略消耗更多保護(hù)帶與設(shè)備端口,浪費(fèi)頻譜資源和增加網(wǎng)絡(luò)能耗的問(wèn)題,該文提出一種頻譜感知的業(yè)務(wù)分割再合并的資源分配策略。為新業(yè)務(wù)分配頻譜資源時(shí),先計(jì)算路徑上總鏈路剩余頻譜連續(xù)度,選擇使剩余頻譜連續(xù)度最大頻譜塊傳輸業(yè)務(wù);當(dāng)路徑上頻隙數(shù)不滿足業(yè)務(wù)傳輸需求空閑頻譜塊時(shí),將該業(yè)務(wù)分割為多個(gè)子業(yè)務(wù),盡可能選取使剩余頻譜連續(xù)度最大的多個(gè)頻譜塊承載各子業(yè)務(wù)。當(dāng)監(jiān)視到子業(yè)務(wù)傳輸路徑上有可用頻隙數(shù)滿足業(yè)務(wù)傳輸所需空閑頻譜塊時(shí),計(jì)算剩余頻譜連續(xù)度作為子業(yè)務(wù)合并觸發(fā)的判決條件,將子業(yè)務(wù)再合并后繼續(xù)傳輸。仿真結(jié)果表明該文提出的策略能有效降低網(wǎng)絡(luò)的帶寬阻塞率,并節(jié)約網(wǎng)絡(luò)的能耗。
-
關(guān)鍵詞:
- 彈性光網(wǎng)絡(luò) /
- 路由頻譜分配 /
- 業(yè)務(wù)分割合并 /
- 帶寬阻塞率 /
- 能耗
Abstract: Traffic split provisioning scheme leads to extra guard band and equipment ports occupation, which decreases the spectrum utilization and increases the energy consumption for elastic optical networks. To address the problem, a spectrum-aware traffic split-merge spectrum resource allocation strategy is proposed. When a new request comes, the total link spectrum consecutiveness for each path is calculated. And the spectral block with the highest spectrum consecutiveness is selected to transmit the request. If the number of frequency slots required by the request exceeds the size of any available spectral block in all paths, the demand is split into multiple sub-demands and allocates them into multiple spectral blocks with relatively higher spectrum consecutiveness. When an available spectral block which meets the requested number of frequency slots is detected on the transmission path, the sub-demands are merged. And spectrum consecutiveness is introduced in the decision criterion for the traffic merge operation. Simulation results indicate that the proposed strategy can significantly reduce the bandwidth blocking probability and save the energy consumption for the elastic optical networks. -
JINNO M, TAKARA H, KOZICKI B, et al. Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s[C]. 34th European Conference on Optical Communication, Brussels, 2008: 1-2. doi: 10.1109/ECOC.2008.4729581. JINNO M, KOZICKI B, TAKARA H, et al. Distance- adaptive spectrum resource allocation in spectrum sliced elastic optical path network[J]. IEEE Communications Magazine, 2010, 48(8): 138-145. doi: 10.1109/MCOM.2010. 5534599. 程希, 沈建華. 一種基于改進(jìn)蟻群算法的光網(wǎng)絡(luò)波長(zhǎng)路由分配算法[J]. 電子與信息學(xué)報(bào), 2012, 34(3): 710-715. doi: 10.3724/SP.J.1146.2011.01032. CHENG Xi and SHEN Jianhua. An improved ant colony algorithm for routing and wavelength assignment in optical networks[J]. Journal of Electronics Information Technology, 2012, 34(3): 710-715. doi: 10.3724/SP.J.1146.2011.01032. 肖媚, 何動(dòng), 張振榮. 基于OOFDM的彈性光網(wǎng)絡(luò)研究[J]. 光通信技術(shù), 2013, 37(4): 29-32. XIAO Mei, HE Dong, and ZHANG Zhenrong. Research on OOFDM-based elastic optical network[J]. Optical Communication Technology, 2013, 37(4): 29-32. YIN Yawei, ZHANG Huan, ZHANG Mingyang, et al. Spectral and spatial 2D fragmentation-aware routing and spectrum assignment algorithms in elastic optical networks[J]. Journal of Optical Communications and Networking, 2013, 5(10): A100-A106. doi: 10.1364/JOCN.5.00A100. CHEN Xin, MA Songwei, GUO Bingli, et al. A novel fragmentation-aware spectrum allocation algorithm in flexible bandwidth optical networks[J]. Optical Switching and Networking, 2014, 12(4): 14-23. doi: 10.1016/j.osn.2013. 11.003. SHIRAZIPOURAZAD S, DERAKHSHANDEH Z, and SEN A. Analysis of on-line routing and spectrum allocation in spectrum-sliced optical networks[C]. IEEE International Conference on Communications, Budapest, 2013: 3899-3903. doi: 10.1109/ICC.2013.6655166. YU Xiaosong, ZHANG Jie, ZHAO Yongli, et al. Spectrum compactness based defragmentation in flexible bandwidth optical networks[C]. Optical Fiber Communication Conference and Exposition, Los Angeles, 2012: 1-3. FANG Wenjian, LU Minhua, LIU Xiahe, et al. Joint defragmentation of optical spectrum and IT resources in elastic optical datacenter interconnections[J]. Journal of Optical Communications and Networking, 2015, 7(4): 314-324. doi: 10.1364/JOCN.7.000314. MUSUMECI F, PULEIO F, and TORNATORE M. Dynamic grooming and spectrum allocation in optical metro ring networks with flexible grid[C]. 15th International Conference on Transparent Optical Networks, Cartagena, 2013: 1-4. doi: 10.1109/ICTON.2013.6602911. ZHANG Guoying, LEENHEER M D, and MUKHERJEE B. Optical traffic grooming in OFDM-based elastic optical networks[J]. Journal of Optical Communications and Networking, 2012, 4(11): B17-B25. doi: 10.1364/JOCN.4.000B17. PAGES A, PERELL J, and SPADARO S. Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks[C]. 16th International Conference on Optical Network Design and Modeling, Colchester, 2012: 1-6. doi: 10.1109/ONDM.2012.6210270. PAGES A, PERELLO J, SPADARO S, et al. Optimal route, spectrum, and modulation level assignment in split- spectrum-enabled dynamic elastic optical networks[J]. Journal of Optical Communications and Networking, 2014, 6(2): 114-126. doi: 10.1364/JOCN.6.000114. 劉煥淋, 歲蒙, 徐一帆, 等. 基于距離自適應(yīng)和有效共享路徑感知的光疏導(dǎo)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1964-1970. doi: 10.11999/JEIT141442. LIU Huanlin, SUI Meng, XU Yifan, et al. A method of optical grooming for distance-adaptive and effective sharing path-aware[J]. Journal of Electronics Information Technology, 2015, 37(8): 1964-1970. doi: 10.11999/ JEIT141442. ZHANG Zhenrong, XIAO Mei, WU Minghou, et al. Adaptive subcarrier-distribution algorithm for routing and spectrum allocation in OFDM-based elastic optical networks[J]. Photonic Network Communications, 2014, 28(3): 225-231. doi: 10.1007/s11107-014-0446-2. AHMAD A, BIANCO A, and BONETTO E. Traffic grooming and energy-efficiency in flexible-grid networks[C]. IEEE International Conference on Communications, Sydney, 2014: 3264-3269. doi: 10.1109/ICC.2014.6883824. ZHANG Jiawei, ZHAO Yongli, YU Xiaosong, et al. Energy-efficient traffic grooming in sliceable-transponder- equipped ip-over-elastic optical networks[J]. Journal of Optical Communications and Networking, 2015, 7(1): A142-A152. doi: 10.1364/JOCN.7.00A142. 曹儐, 劉勰, 孫奇. 軟件定義網(wǎng)絡(luò)架構(gòu)下的動(dòng)態(tài)自適應(yīng)負(fù)載均衡策略研究[J]. 重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 27(4): 460-465. doi: 10.3979/j.issn.1673-825X.2015.04.005. CAO Bin, LIU Xie, and SUN Qi. Dynamically adaptive load balancing strategy under the software defined network structure[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(4): 460-465. doi: 10.3979/j.issn.1673-825X.2015.04.005. -
計(jì)量
- 文章訪問(wèn)數(shù): 1537
- HTML全文瀏覽量: 276
- PDF下載量: 431
- 被引次數(shù): 0