動態(tài)QoS數(shù)據(jù)驅(qū)動的可靠Web服務(wù)選擇
doi: 10.11999/JEIT150831
-
1.
(渤海大學(xué)信息科學(xué)與技術(shù)學(xué)院 錦州 121013) ②(渤海大學(xué)圖書館 錦州 121013)
國家自然科學(xué)基金(41371425),教育部人文社會科學(xué)研究青年基金(15YJC870028),遼寧省自然科學(xué)基金(2015020009),遼寧省教育廳科學(xué)技術(shù)研究(L2014451),遼寧省社會科學(xué)規(guī)劃基金(L15BTQ002)
Dynamic QoS Data-driven Reliable Web Service Selection
-
1.
(College of Information Science and Technology, Bohai University, Jinzhou 121013, China)
-
2.
(Library, Bohai University, Jinzhou 121013, China)
The National Natural Science Foundation of China (41371425), Humanity and Social Science Youth Foundation of Ministry of Education of China (15YJC870028), Natural Science Foundation of Liaoning Province (2015020009), General Project of Science and Technology Research of Education Department of Liaoning Province of China (L2014451), Social Science Planning Fund of Liaoning Province of China (L15BTQ002)
-
摘要: 基于服務(wù)質(zhì)量(QoS)的Web服務(wù)最優(yōu)選擇是一個熱點問題。高度動態(tài)的QoS數(shù)據(jù)導(dǎo)致QoS模型的不確定性,對可靠的Web服務(wù)選擇構(gòu)成巨大的挑戰(zhàn),該文提出動態(tài)QoS數(shù)據(jù)驅(qū)動的可靠Web服務(wù)選擇(DQoS_RSS)。首先利用均值標準差刻畫QoS數(shù)據(jù)的效益和風(fēng)險,提高QoS描述的準確度;接著建立不確定服務(wù)Skyline集,縮小搜索空間,提高選擇效率;借鑒優(yōu)劣解距離法(TOPSIS),設(shè)計2種Web服務(wù)選擇算法,獲得體現(xiàn)用戶需求的最優(yōu)服務(wù)。另外,介紹2種QoS模型轉(zhuǎn)換器,以及能夠適應(yīng)QoS動態(tài)變化的QoS模型自適應(yīng)調(diào)整機制。最后,實驗分析驗證了該方法的優(yōu)越性和高效性。
-
關(guān)鍵詞:
- Web服務(wù) /
- 服務(wù)選擇 /
- QoS數(shù)據(jù) /
- Skyline /
- 均值標準差
Abstract: The optimal Web service selection based on QoS is still a hot issue. Highly dynamic QoS data leading to uncertainty QoS model is a huge challenge for reliable Web service selection. This paper presents Dynamic QoS Data-driven Reliable Web Service Selection (DQoS_RSS). First, DQoS_RSS uses mean and standard deviation to portray the benefit and risk of QoS and to improve the accuracy of QoS description. Then, the uncertain service Skyline set is built to reduce the search scope, to improve the efficiency of Web service selection. Drown on the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) theory, 2 kinds of service selection algorithm are designed to obtain the optimal Web service reflecting users QoS needs. In addition, 2 kinds of QoS model converter are introduced to convert QoS data to QoS model; and the QoS model adaptive adjustment mechanism is introduced too, which can adapt to the dynamic changes of QoS. Finally, some experiments demonstrate the superiority and efficiency of the presented approach.-
Key words:
- Web service /
- Service selection /
- QoS data /
- Skyline /
- Mean and standard deviat
-
王海艷, 張大印. 一種可信的基于協(xié)同過濾的服務(wù)選擇模型[J].電子與信息學(xué)報, 2013, 35(2): 349-354. doi: 10.3724/ SP.J. 1146.2012.00946. WANG Haiyan and ZHANG Dayin. A trustworthy service selection model based on collaborative filtering[J]. Journal of Electronics Information Technology, 2013, 35(2): 349-354. doi: 10.3724/ SP.J.1146.2012.00946. 于磊, 王智立, 戢勇, 等. 企業(yè)戰(zhàn)略驅(qū)動的QoS屬性相關(guān)Web服務(wù)選擇與部署方法[J].電子與信息學(xué)報, 2014, 36(2): 488-492. doi: 10.3724/SP.J.1146.2013.00634. YU Lei, WANG Zhili, JI Yong, et al. A Web services selection and deployment method based on enterprise strategies and related QoS criteria[J]. Journal of Electronics Information Technology, 2014, 36(2): 488-492. doi: 10.3724/SP.J.1146. 2013.00634. CHEN Xi, ZHENG Zibin, YU Qi, et al. Web service recommendation via exploiting location and QoS information [J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(7): 1913-1924. doi: 10.1109/ TPDS.2013.308. RAMACHER R and MONCH L. Service selection with runtime aspects: a hierarchical approach[J]. IEEE Transactions on Services Computing, 2015, 8(3): 481-493. doi: 10.1109/TSC.2014.2346181. DING Zhijun, LIU Junjun, SUN Youqing, et al. A transaction and QoS-aware service selection approach based on genetic algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(7): 1035-1046. doi: 10.1109/ TSMC.2015.2396001. WANG Ping, CHAO Kuoming, and LO Chichun. On optimal decision for QoS-aware composite service selection[J]. Expert Systems with Applications, 2010, 37(1): 440-449. doi: 10.1016/j.eswa.2009.05.070. WANG Ping. QoS-aware web services selection with intuitionistic fuzzy set under consumers vague perception[J]. Expert Systems with Applications, 2009, 36(3): 4460-4466. doi: 10.1016/j.eswa.2008.05.007. SUN Le, HAI Dong, HUSSAIN FK, et al. A hybrid fuzzy framework for cloud service selection[C]. IEEE International Conference on Web Services (ICWS), Alaska Anchorage, 2014: 313-320. doi: 10.1109/ICWS.2014.53. ZHANG Longchang, ZHANG Xiaoxia, and YANG Yanhong. Hybrid QoS-aware Web service composition strategies for group pareto optimal plan[J].Journal of Internet Technology, 2015, 6(2): 255-266. doi: 10.6138/JIT.2015.16.2.20120827. 林日昶, 陳碧歡, 彭鑫, 等. 支持風(fēng)險偏好的Web 服務(wù)動態(tài)組合方法[J]. 中國科學(xué)信息科學(xué), 2014, 44(1): 130-141. doi: 10.1360/N112013-00099. LIN Richang, CHEN Bihuan, PENG Xin, et al. Dynamic Web service composition approach supporting different risk appetites[J]. SCIENTIA SINICA Informationis, 2014, 44(1): 130-141. doi: 10.1360/N112013-00099. 張龍昌, 楊艷紅, 趙緒輝. 基于云模型的SaaS決策方法[J]. 電子學(xué)報, 2015, 43(5): 987-992. doi: 10.3969/j.issn. 0372-2112.2015.05.023. ZHANG Longchang, YANG Yanhong, and ZHAO Xuhui. SaaS decision-making method based on cloud model[J]. Acta Electronica Sinica, 2015, 43(5): 987-992. doi: 10.3969/j.issn. 0372-2112.2015.05.023. HWANG Sanyih, HSU Chienching, and LEE Chienhsiang. Service selection for Web services with probabilistic QoS[J]. IEEE Transactions on Services Computing, 2015, 8(3): 467-480. doi: 10.1109/TSC.2014.2338851. SCHULLER D, SIEBENHAAR M, HANS R, et al. Towards heuristic optimization of complex service-based workflows for stochastic QoS attributes[C]. IEEE International Conference on Web Services (ICWS), Alaska Anchorage, 2014: 361-368. doi: 10.1109/ICWS.2014.59. YU Qi and BOUGUETTAYA A. Efficient service skyline computation for composite service selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4): 776-789. doi: 10.1109/TKDE.2011.268. ZHAO Xin, SHEN Liwei, PENG Xin, et al. Finding preferred skyline solutions for SLA-constrained service composition[C]. International Conference on Web Services (ICWS), California Santa Clara, 2013: 195-202. doi: 10.1109/ICWS.2013.35. BENOUARET K, BENSLIMANE D and HADJALI A. Selecting skyline Web services from uncertain QoS [C]. IEEE International Conference on Services Computing (SCC), HI Honolulu, 2012: 24-29. doi: 10.1109/SCC.2012.84. YU Qi and BOUGUETTAYA A. Computing service skyline from uncertain QoWS[J]. IEEE Transactions on Service Computing, 2010, 3(1): 16-29. doi: 10.1109/TSC.2010.7. YKARIM B, DJAMAL B, and ALLEL H. On the use of fuzzy dominance for computing service skyline based on QoS[C]. IEEE International Conference on Web Services (ICWS), Washington, 2011: 540-547. doi: 10.1109/ICWS.2011.93. ZHENG Zibin, MA Hao, LYU M R, et al. QoS-aware Web service recommendation by collaborative filtering[J]. IEEE Transactions on Services Computing, 2011, 4(2): 140-152. doi: 10.1109/TSC.2010.52. ZHENG Zibin and LYU Michael R. Collaborative reliability prediction for service-oriented systems[C]. ACM/IEEE International Conference on Software Engineering (ICSE), New York, 2010: 35-44. doi: 10.1145/1806799.1806809. -