軟件定義光網(wǎng)絡(luò)中基于最小點(diǎn)覆蓋的控制平面跨層生存性設(shè)計(jì)
doi: 10.11999/JEIT150815
國(guó)家自然科學(xué)基金(61401052),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1400418, KJ1500445),重慶郵電大學(xué)博士啟動(dòng)基金(A2015-09)
The Cross-layer Survivable Design of Control Plane Based on Minimum Point Covering in Software Defined Optical Network
The National Natural Science Foundation of China (61401052), The Science and Technology Project of Chongqing Municipal Education Commission (KJ1400418, KJ1500445), The Ph. D. Start-up Fund of Chongqing University of Posts and Telecommunications (A2015-09)
-
摘要: 為降低軟件定義光網(wǎng)絡(luò)對(duì)單控制器的依賴,并避免多控制器沖突,有效提升控制平面的生存性,該文提出基于最小點(diǎn)覆蓋的控制平面生存性設(shè)計(jì)策略。該策略結(jié)合集中控制約束條件,以最小點(diǎn)覆蓋理論為基礎(chǔ),建立可靠的分級(jí)管控模型,設(shè)定控制器的管控優(yōu)先級(jí):全局控制器具有最高管控優(yōu)先級(jí),對(duì)全網(wǎng)進(jìn)行集中管控;本地控制器次之,只對(duì)本地業(yè)務(wù)進(jìn)行集中管控;權(quán)威交換機(jī)的管控優(yōu)先級(jí)最低,用于完成局部波長(zhǎng)粒度的光層快速管控。在此基礎(chǔ)上,基于跨層信息模型為控制信道路由和資源分配進(jìn)行生存性冗余設(shè)計(jì)。仿真表明,該策略能夠滿足網(wǎng)絡(luò)對(duì)控制時(shí)延的要求,使控制平面的故障概率降低了30%,有效提升了網(wǎng)絡(luò)在惡劣環(huán)境下的生存性。
-
關(guān)鍵詞:
- 軟件定義光網(wǎng)絡(luò) /
- 生存性 /
- 控制平面 /
- 分級(jí)管控 /
- 最小點(diǎn)覆蓋
Abstract: In order to lower the reliance on single controller in Software Defined Optical Network (SDON), avoid the conflict of different controllers, and improve effectively the survivability on the control plane, the survivable design of SDON control plane based on minimum point covering is proposed. Combined with the constraint of centralized control, the algorithm based on the minimum point covering establishes reliable hierarchical control model, and sets control priority to controllers. The master controller with the highest priority centralized controls the whole net, and the next comes the regional controller, which only intensively controls regional traffic, besides the authority switch which is introduced to control local wavelength in the optical layer owns the lowest level. Meanwhile, the model based on cross-layer information designs survivability redundancy for routing and allocates resource for the control channel. Simulation results show that the proposed strategy can satisfy the request on control delays, and lower the failure probability in the control plane by 30%, thus promoting the network survivability under critical environment. -
CHOI J S. Design and implementation of a PCE-based software-defined provisioning framework for carrier-grade MPLS-TP networks[J]. Photonic Network Communications, 2014, 29(1): 96-105. 姚琳元, 陳穎, 宋飛, 等. 基于時(shí)延的軟件定義網(wǎng)絡(luò)快速響應(yīng)控制器部署[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2802-2808. doi: 10.3724/SP.J.1146.2014.00211. YAO Linyuan, CHEN Ying, SONG Fei, et al. Delay-aware controller placement for fast response in software-defined network[J]. Journal of Electronics Information Technology, 2014, 36(12): 2802-2808. doi: 10.3724/SP.J.1146.2014.00211. 左青云, 陳鳴, 趙廣松, 等. 基于OpenFlow的SDN技術(shù)研究[J]. 軟件學(xué)報(bào), 2013, 24(5): 1078-1097. ZUO Qingyun, CHEN Ming, ZHAO Guangsong, et al. Research on openflow-based SDN technologies[J]. Journal of Software, 2013, 24(5): 1078-1097. CASADO M, GARFINKEL T, et al. SANE: a protection architecture for enterprise networks[C]. Usenix Security, Vancouver, 2006: 137-151. CASADO M, FREEDMAN M J, PETTIT J, et al. Ethane: taking control of the enterprise[J]. ACM SIGCOMM Computer Communication Review, 2007, 37(4): 1-12. MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: enabling innovation in campus networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. Open Networking Foundation. version 1.3. 4. OpenFlow switch specification[S]. 2014. HELLER B, SHERWOOD R, and MCKEOWN N. The controller placement problem[C]. Proceedings of the First ACM Workshop on Hot Topics in Software Defined Networks, Helsinki, 2012: 7-12. JAIN S, KUMAR A, MANDAL S, et al. B4: experience with a globally-deployed software defined WAN[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 3-14. YU M, REXFORD J, FREEDMAN M J, et al. Scalable flow-based networking with DIFANE[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(4): 351-362. ZHANG Y, BEHESHTI N, and TATIPAMULA M. On resilience of split-architecture networks[C]. IEEE Global Telecommunications Conference (GLOBECOM). Houston, 2011: 1-6. MLLER L F, OLIVEIRA R R, et al. Survivor: an enhanced controller placement strategy for improving SDN survivability[C]. IEEE Global Communications Conference (GLOBECOM), Austin, 2014: 1909-1915. 熊余, 張鴻, 王汝言, 等. 基于光通路狀態(tài)感知的分簇式故障定位機(jī)制[J]. 電子與信息學(xué)報(bào), 2014, 36(1): 41-47. doi: 10.3724/SP.J.1146.2013.00214. XIONG Yu, ZHANG Hong, WANG Ruyan, et al. Fault location mechanism based on lightpath status aware using cluster allocation[J]. Journal of Electronics Information Technology, 2014, 36(1): 41-47. doi: 10.3724/SP.J.1146.2013. 00214. 張清華, 陳六新, 等. 圖論及其應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2013: 126-137. ZHANG Qinghua, CHEN Liuxin, et al. Graph Theory and Its Application[M]. Beijing: Tsinghua University Press, 2013: 126-137. ZHANG D, SONG X, CHEN C, et al. Software defined synergistic IP+optical resilient transport networks[J]. Journal of Optical Communications and Networking, 2015, 7(2): A209-A217. DIN D R and HUANG J S. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks[J]. Optical Fiber Technology, 2014, 20(2): 142-157. -
計(jì)量
- 文章訪問(wèn)數(shù): 1229
- HTML全文瀏覽量: 129
- PDF下載量: 431
- 被引次數(shù): 0