高分辨SAR圖像自動(dòng)區(qū)域篩選目標(biāo)檢測(cè)算法
doi: 10.11999/JEIT150808
國(guó)家自然科學(xué)基金(61201292, 61322103, 61372132),全國(guó)優(yōu)秀博士學(xué)位論文作者專(zhuān)項(xiàng)資金(FANEDD-201156),中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金
An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image
The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD-201156), The Fundamental Research Funds for the Central Universities
-
摘要: 在G0分布背景雜波假設(shè)下,基于VI-CFAR算法該文提出一種自動(dòng)區(qū)域篩選的恒虛警目標(biāo)檢測(cè)算法,以解決高分辨SAR圖像復(fù)雜環(huán)境背景下的目標(biāo)檢測(cè)問(wèn)題。該算法首先利用變化指數(shù)(VI)統(tǒng)計(jì)量對(duì)局部參考窗內(nèi)的均勻區(qū)域進(jìn)行篩選,以剔除參考窗內(nèi)具有目標(biāo)干擾點(diǎn)的非均勻區(qū)域;然后利用均值比(MR)統(tǒng)計(jì)量對(duì)參考窗內(nèi)同質(zhì)的均勻區(qū)域進(jìn)行區(qū)域合并,以解決雜波邊界處的背景雜波篩選問(wèn)題;最后利用篩選到的同質(zhì)均勻區(qū)域內(nèi)的像素集合進(jìn)行背景雜波參數(shù)估計(jì),對(duì)待檢測(cè)區(qū)域?qū)崿F(xiàn)二值檢測(cè)。通過(guò)實(shí)測(cè)SAR圖像車(chē)輛目標(biāo)檢測(cè)實(shí)驗(yàn)表明,在多目標(biāo)和雜波邊界復(fù)雜環(huán)境背景下,該算法具有較穩(wěn)定的檢測(cè)性能和虛警抑制能力。Abstract: Assuming theG0 distribution clutter background, an automatic block-to-block censoring CFAR (ABC-CFAR) detector is proposed based on VI-CFAR for high resolution SAR image in nonhomogeneous environments. Firstly the Variability Index (VI) statistic is used to censor the blocks in the local reference window in order to reject the non-homogeneous ones in which there exists interfering target samples. Then the Mean Ratio (MR) statistic is utilized to select and combine the homogeneous blocks which have the same distribution, in order to solve background clutter censoring problem in clutter edge situation. At last, with the selected blocks, the distribution parameters of the background clutter are estimated, and then the binary detection is implemented in the Block Under Test (BUT). Using the real SAR image data including ground vehicle targets, the experimental results show that the proposed ABC-CFAR detector has robust detection performance and false alarm regulation property in multi-target and clutter edge nonhomogeneous environment.
-
Key words:
- Block-to-block censoring /
- Variability Index (VI) /
- Mean Ratio (MR) /
- G0distribution /
-
何友, 黃勇, 關(guān)鍵, 等. 海雜波中的雷達(dá)目標(biāo)檢測(cè)技術(shù)綜述[J]. 現(xiàn)代雷達(dá), 2014, 36(12): 1-9. HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1-9. 張小強(qiáng), 熊博蒞, 匡綱要. 一種基于變化檢測(cè)技術(shù)的 SAR 圖像艦船目標(biāo)鑒別方法[J]. 電子與信息學(xué)報(bào), 2015 , 37(1): 63-70. doi: 10.11999/JEIT140143. ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143. WANG Yinghua and LIU Hongwei. PolSAR ship detection based on superpixel-level scattering mechanism distribution features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (8): 1780-1784. doi: 10.1109/LGRS.2015.2425873. El-Darymli K, McGuire P, Power D, et al. Target detection in synthetic aperture radar imagery: a state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-35. doi: 10.1117/1.JRS.7.071598. Mishne G, Talmon R, and Cohen I. Graph-based supervised automatic target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (5): 2738-2754. doi: 10.1109/TGRS.2014.2364333. HOU Biao, CHENG Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (4): 811-815. ZHANG Yangrui, GAO Meiguo, and LI Yunjie. Performance analysis of typical mean-level CFAR detectors in the interfering target background[C]. IEEE 9th Conference on (Industrial Electronics and Applications) ICIEA, Hangzhou, 2014: 1045-1048. Rickard J T and Dillard G M. Adaptive detection algorithms for multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(4): 338-343. doi: 10.1109/TAES.1977.308466. Ghandhi P P and Kassam S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445. Himonas S D and Barkat M. Automatic censored CFAR detection for non-homogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 286-304. Smith M E and Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847. doi: 10.1109/ 7.869503. Farrouki A and Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[J]. IEE Proceedings of Radar, Sonar and Navigation, 2005, 152(1): 43-51. doi: 10.1049/ ip-rsn: 20045006. Zaimbashi A and Norouzi Y. Automatic dual censoring cell averaging CFAR detector in nonhomogeneous environments [J]. Signal Processing, 2008, 88(11): 2611-2621. doi: 10.1016/j. sigpro.2008.04.016. Zaimbashi A. An adaptive cell averaging-based CFAR detector for interfering targets and clutter-edge situations[J]. Digital Signal Processing, 2014, 31: 59-68. doi: 10.1016/j. dsp.2014.04.005. Almarshad M N, Barkat M, and Alshebeili S A. A monte carlo simulation for two novel automatic censoring techniques of radar interfering targets in log-normal clutter[J]. Signal Processing, 2008, 88(3): 719-732. doi: 10.1016/j.sigpro.2007. 09.013. Chabbi S, Laroussi T, and Barkat M. Performance analysis of dual automatic censoring and detection in heterogeneous Weibull clutter: A comparison through extensive simulations [J]. Signal Processing, 2013, 99(11): 2879-2893. doi: j.sigpro. 2013.03.026. Frery A C, Muller H J, Yanasse C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 648-659. doi: 10.1109/36.581981. GAO Gui, LIU Li, ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS.2008.2006504. YU Wenyi, WANG Yinghua, LIU Hongwei, et al. Superpixel- based CFAR target detection for high-resolution SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 2016, pp(99): 1-5. doi: 10.1109/LGRS.2016.2540809. Salazar J C. II. Detection schemes for synthetic aperture radar imagery based on a beta prime statistical model[D]. [Ph.D. dissertation], Florida University, 1999. Kreithen D E, Halversen S D, and Owirka G J. Discriminating targets from clutter[J]. The Lincoln Laboratory Journal, 1993, 6(1): 25-51. -
計(jì)量
- 文章訪問(wèn)數(shù): 1685
- HTML全文瀏覽量: 143
- PDF下載量: 701
- 被引次數(shù): 0