一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

高分辨SAR圖像自動(dòng)區(qū)域篩選目標(biāo)檢測(cè)算法

宋文青 王英華 劉宏偉

宋文青, 王英華, 劉宏偉. 高分辨SAR圖像自動(dòng)區(qū)域篩選目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808
引用本文: 宋文青, 王英華, 劉宏偉. 高分辨SAR圖像自動(dòng)區(qū)域篩選目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808
SONG Wenqing, WANG Yinghua, LIU Hongwei. An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808
Citation: SONG Wenqing, WANG Yinghua, LIU Hongwei. An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808

高分辨SAR圖像自動(dòng)區(qū)域篩選目標(biāo)檢測(cè)算法

doi: 10.11999/JEIT150808
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61201292, 61322103, 61372132),全國(guó)優(yōu)秀博士學(xué)位論文作者專(zhuān)項(xiàng)資金(FANEDD-201156),中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金

An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image

Funds: 

The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD-201156), The Fundamental Research Funds for the Central Universities

  • 摘要: 在G0分布背景雜波假設(shè)下,基于VI-CFAR算法該文提出一種自動(dòng)區(qū)域篩選的恒虛警目標(biāo)檢測(cè)算法,以解決高分辨SAR圖像復(fù)雜環(huán)境背景下的目標(biāo)檢測(cè)問(wèn)題。該算法首先利用變化指數(shù)(VI)統(tǒng)計(jì)量對(duì)局部參考窗內(nèi)的均勻區(qū)域進(jìn)行篩選,以剔除參考窗內(nèi)具有目標(biāo)干擾點(diǎn)的非均勻區(qū)域;然后利用均值比(MR)統(tǒng)計(jì)量對(duì)參考窗內(nèi)同質(zhì)的均勻區(qū)域進(jìn)行區(qū)域合并,以解決雜波邊界處的背景雜波篩選問(wèn)題;最后利用篩選到的同質(zhì)均勻區(qū)域內(nèi)的像素集合進(jìn)行背景雜波參數(shù)估計(jì),對(duì)待檢測(cè)區(qū)域?qū)崿F(xiàn)二值檢測(cè)。通過(guò)實(shí)測(cè)SAR圖像車(chē)輛目標(biāo)檢測(cè)實(shí)驗(yàn)表明,在多目標(biāo)和雜波邊界復(fù)雜環(huán)境背景下,該算法具有較穩(wěn)定的檢測(cè)性能和虛警抑制能力。
  • 何友, 黃勇, 關(guān)鍵, 等. 海雜波中的雷達(dá)目標(biāo)檢測(cè)技術(shù)綜述[J]. 現(xiàn)代雷達(dá), 2014, 36(12): 1-9.
    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1-9.
    張小強(qiáng), 熊博蒞, 匡綱要. 一種基于變化檢測(cè)技術(shù)的 SAR 圖像艦船目標(biāo)鑒別方法[J]. 電子與信息學(xué)報(bào), 2015 , 37(1): 63-70. doi: 10.11999/JEIT140143.
    ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    WANG Yinghua and LIU Hongwei. PolSAR ship detection based on superpixel-level scattering mechanism distribution features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (8): 1780-1784. doi: 10.1109/LGRS.2015.2425873.
    El-Darymli K, McGuire P, Power D, et al. Target detection in synthetic aperture radar imagery: a state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-35. doi: 10.1117/1.JRS.7.071598.
    Mishne G, Talmon R, and Cohen I. Graph-based supervised automatic target detection[J]. IEEE Transactions on Geoscience and Remote Sensing,  2015, 53 (5): 2738-2754. doi: 10.1109/TGRS.2014.2364333.
    HOU Biao, CHENG Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (4): 811-815.
    ZHANG Yangrui, GAO Meiguo, and LI Yunjie. Performance analysis of typical mean-level CFAR detectors in the interfering target background[C]. IEEE 9th Conference on (Industrial Electronics and Applications) ICIEA, Hangzhou, 2014: 1045-1048.
    Rickard J T and Dillard G M. Adaptive detection algorithms for multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(4): 338-343. doi: 10.1109/TAES.1977.308466.
    Ghandhi P P and Kassam S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445.
    Himonas S D and Barkat M. Automatic censored CFAR detection for non-homogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 286-304.
    Smith M E and Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847. doi: 10.1109/ 7.869503.
    Farrouki A and Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[J]. IEE Proceedings of Radar, Sonar and Navigation, 2005, 152(1): 43-51. doi: 10.1049/ ip-rsn: 20045006.
    Zaimbashi A and Norouzi Y. Automatic dual censoring cell averaging CFAR detector in nonhomogeneous environments [J]. Signal Processing, 2008, 88(11): 2611-2621. doi: 10.1016/j. sigpro.2008.04.016.
    Zaimbashi A. An adaptive cell averaging-based CFAR detector for interfering targets and clutter-edge situations[J]. Digital Signal Processing, 2014, 31: 59-68. doi: 10.1016/j. dsp.2014.04.005.
    Almarshad M N, Barkat M, and Alshebeili S A. A monte carlo simulation for two novel automatic censoring techniques of radar interfering targets in log-normal clutter[J]. Signal Processing, 2008, 88(3): 719-732. doi: 10.1016/j.sigpro.2007. 09.013.
    Chabbi S, Laroussi T, and Barkat M. Performance analysis of dual automatic censoring and detection in heterogeneous Weibull clutter: A comparison through extensive simulations [J]. Signal Processing, 2013, 99(11): 2879-2893. doi: j.sigpro. 2013.03.026.
    Frery A C, Muller H J, Yanasse C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 648-659. doi: 10.1109/36.581981.
    GAO Gui, LIU Li, ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS.2008.2006504.
    YU Wenyi, WANG Yinghua, LIU Hongwei, et al. Superpixel- based CFAR target detection for high-resolution SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 2016, pp(99): 1-5. doi: 10.1109/LGRS.2016.2540809.
    Salazar J C. II. Detection schemes for synthetic aperture radar imagery based on a beta prime statistical model[D]. [Ph.D. dissertation], Florida University, 1999.
    Kreithen D E, Halversen S D, and Owirka G J. Discriminating targets from clutter[J]. The Lincoln Laboratory Journal, 1993, 6(1): 25-51.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1685
  • HTML全文瀏覽量:  143
  • PDF下載量:  701
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-07-08
  • 修回日期:  2015-11-20
  • 刊出日期:  2016-05-19

目錄

    /

    返回文章
    返回