基于正交壓縮采樣系統(tǒng)的脈沖雷達(dá)回波信號(hào)實(shí)時(shí)重構(gòu)方法
doi: 10.11999/JEIT150767
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61171166, 61401210, 61571228),中國(guó)博士后科學(xué)基金(2014M551597)
A Real-time Reconstruction Scheme of Pulsed Radar Echoes with Quadrature Compressive Sampling
Funds:
The National Natural Science Foundation of China (61171166, 61401210, 61571228), China Postdoctoral Science Foundation (2014M551597)
-
摘要: 正交壓縮采樣是低速獲取帶通模擬信號(hào)同相和正交分量的新型模信轉(zhuǎn)換系統(tǒng),可廣泛應(yīng)用于雷達(dá)、通信等電子系統(tǒng)。但是對(duì)于寬帶或超寬帶脈沖雷達(dá),重構(gòu)奈奎斯特率的全程回波信號(hào)需要大的存儲(chǔ)空間和計(jì)算量,以致于難以實(shí)現(xiàn)實(shí)時(shí)重構(gòu)。該文在對(duì)正交壓縮采樣系統(tǒng)特性進(jìn)行分析的基礎(chǔ)上,將測(cè)量矩陣近似成一種具有特殊帶狀結(jié)構(gòu)的矩陣,然后采用分段滑動(dòng)重構(gòu)思想實(shí)現(xiàn)實(shí)時(shí)重構(gòu)。仿真結(jié)果表明,在對(duì)測(cè)量矩陣進(jìn)行合理近似的基礎(chǔ)上,該文提出的重構(gòu)方法可以極大地節(jié)省存儲(chǔ)空間和計(jì)算時(shí)間,實(shí)現(xiàn)近似最優(yōu)的重構(gòu)性能。
-
關(guān)鍵詞:
- 雷達(dá)信號(hào)處理 /
- 分段滑動(dòng)重構(gòu) /
- 正交壓縮采樣 /
- 模擬信息轉(zhuǎn)換
Abstract: Quadrature Compressive Sampling (QuadCS) is an efficient Analog-to-Information Conversion (AIC) system to sample band-pass analog signals at sub-Nyquist rates. The QuadCS can be widely used in radar and communication systems to acquire sub-Nyquist samples of inphase and quadrature components. However, for wideband or ultra-wideband pulsed radars, it is often impractical to reconstruct Nyquist samples of full-range echoes in real-time because of huge storage and computational loads. Based on the characteristics of QuadCS system, an approximate scheme is proposed to transform the QuadCS measurement matrix into a matrix with a special banded structure. With the banded matrix, a segment-sliding reconstruction method is adopted to perform real-time reconstruction. Simulation results show that with a reasonable approximation of the measurement matrix, the proposed reconstruction scheme achieves nearly optimal reconstruction performance with a significant reduction of data storage and computational time. -
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. CANDS E J and TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/TIT.2006.885507. CANDS E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979. YOO J, TURNES C, NAKAMURA E B, et al. A compressed sensing parameter extraction platform for radar pulse signal acquisition[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 626-638. doi: 10.1109/JETCAS.2012.2214634. BARANSKY E, ITZHAK G, WAGNER N, et al. Sub- Nyquist radar prototype: hardware and algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 809-822. doi: 10.1109/TAES.2014.120475. BAR-ILAN O and ELDAR Y C. Sub-Nyquist radar via Doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811. doi: 10.1109/TSP.2014.2304917. LIU C, XI F, CHEN S, et al. A pulse-Doppler processing scheme for quadrature compressive sampling radar[C]. Proceedings of the 19th International Conference on Digital Signal Processing (DSP), Hong Kong, China, 2014: 676-681. doi: 10.1109/ICDSP.2014.6900750. LIU C, XI F, CHEN S, et al. Pulse-Doppler signal processing with quadrature compressive sampling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1217-1230. doi: 10.1109/TAES.2014.130475. KIROLOS S, LASKA J, WAKIN M, et al. Analog-to- information conversion via random demodulation[C]. Proceedings of the IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software (DCAS), Richardson, TX, USA, 2006: 71-74. doi: 10.1109/DCAS.2006. 321036. TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544. doi: 10.1109/TIT.2009.2034811. BECKER S R. Practical compressed sensing: modern data acquisition and signal processing[D]. [Ph.D. dissertation], California Institute of Technology, Pasadena, CA, USA, 2011. MISHALI M, ELDAR Y C, and ELRON A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734. doi: 10.1109/TSP.2011.2161472. XI F, CHEN S, and LIU Z. Quadrature compressive sampling for radar echo signals[C]. Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2011: 1-5. doi: 10.1109/ WCSP.2011.6096838. XI F, CHEN S, and LIU Z. Quadrature compressive sampling for radar signals[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2787-2802. doi: 10.1109/TSP.2014.2315168. TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108. YIN W, OSHER S, GOLDFARB D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168. doi: 10.1137/070703983. WU Q, ZHANG Y D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 3375-3379. doi: 10.1109/ICASSP.2014.6854226. TROPP J A and WRIGHT S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6): 948-958. doi: 10.1109/JPROC.2010. 2044010. PETROS T B and ASIF M S. Compressive sensing for streaming signals using the streaming greedy pursuit[C]. Proceedings of the Military Communications Conference (MILCOM), San Jose, CA, USA, 2010: 1205-1210. doi: 10.1109/ MILCOM.2010.5680110. ASIF M S and ROMBERG J. Sparse recovery of streaming signals using L1 homotopy[J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4209-4223. doi: 10.1109/TSP.2014. 2328981. QIN S, ZHANG Y D, WU Q, et al. Large-scale sparse reconstruction through partitioned compressive sensing[C]. Proceedings of the 19th International Conference on Digital Signal Processing, Hong Kong, China, 2014: 837-840. doi: 10.1109/ICDSP.2014.6900784. HERMAN M A and STROHMER T. General deviants: an analysis of perturbations in compressed sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 342-349. doi: 10.1109/JSTSP.2009.2039170. HERMAN M A and NEEDELL D. Mixed operators in compressed sensing[C]. Proceedings of the 44th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 2010: 1-6. doi: 10.1109/CISS. 2010. 5464909. DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410. doi: 10.1109/TSP. 2012.2222377. VAUGHAN R G, SCOTT N L, and WHITE D R. The theory of bandpass sampling[J]. IEEE Transactions on Signal Processing, 1991, 39(9): 1973-1984. doi: 10.1109/78.134430. -
計(jì)量
- 文章訪問數(shù): 1380
- HTML全文瀏覽量: 106
- PDF下載量: 364
- 被引次數(shù): 0