基于分形特性改進(jìn)的EMD目標(biāo)檢測算法
doi: 10.11999/JEIT150731
國家自然科學(xué)基金(61501487, 61471382, 61401495, 61201445, 61179017),山東省自然科學(xué)基金(2015ZRA06052),泰山學(xué)者建設(shè)工程專項經(jīng)費
Improved EMD Target Detection Method Based on Mono Fractal Characteristics
The National Natural Science Foundation of China (61501487, 61471382, 61401495, 61201445, 61179017), The Natural Science Foundation of Shandong Province (2015ZRA 06052), The Special Funds of Taishan Scholars Construction Engineering
-
摘要: 為克服原有檢測算法在目標(biāo)和海雜波混疊時檢測性能下降的問題,該文提出一種基于分形特性改進(jìn)的經(jīng)驗?zāi)B(tài)分解(EMD)目標(biāo)檢測算法。該算法對原始信號經(jīng)經(jīng)驗?zāi)B(tài)分解后得到的固有模態(tài)函數(shù)進(jìn)行數(shù)據(jù)重構(gòu),再采用快速傅里葉變換獲得去噪后的海雜波單元和目標(biāo)單元的頻譜,計算兩者的單一Hurst指數(shù),并將其輸入非參量檢測器中進(jìn)行目標(biāo)檢測。研究表明,雖然目標(biāo)和海雜波在頻譜中難以區(qū)分,但兩者在無標(biāo)度區(qū)間內(nèi)的單一Hurst指數(shù)存在差異,因此所提檢測算法相比于原有頻域檢測算法性能更優(yōu)。
-
關(guān)鍵詞:
- 目標(biāo)檢測 /
- 經(jīng)驗?zāi)B(tài)分解 /
- 分形理論 /
- 廣義符號 /
- 海雜波
Abstract: In order to overcome the detection performance degradation of the existing detection method when the target and sea clutter is hard to distinguish, an improved target detection method based on mono fractal characteristics is proposed. Firstly, for getting the Intrinsic Mode Function (IMF) after reconstruction, the original signal is decomposed by using Empirical Mode Decomposition (EMD), then the spectrum of target bin and sea clutter bin after denoising is gained by using Fast Fourier Transform (FFT), Mono-Hurst exponents are calculated and the target is detected by nonparametric detector. The results show that, although target and sea clutter is hard to distinguish from frequency spectrum, but their Mono-Hurst exponents is different in scale-invariant interval, compared with original detection method in frequency domain, the proposed method can achieve good detection performance. -
HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454: 903-995. YANG Gongliu, LIU Yuanyuan, WANG Yanyong, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95-109. AHMET Mert and AVDIN Akan. Detrended fluctuation thresholding for empirical mode decomposition based denoising[J]. Digital Signal Processing, 2014, 32: 48-56. FAIRCHILD D P and NARAYANAN R M. Classification of human motions using empirical mode decomposition of human micro-Doppler signatures[J]. IET Radar, Sonar Navigation, 2014, 8(5): 425-434. YUAN Bin, CHEN Zengping, and XU Shiyou. Micro- Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1285-1298. SONG Rui, GUO Huadong, and LIU Guang. Improved Goldstein SAR Interferogram filter based on empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 399-403. 林文晶, 張榆鋒, 章克信, 等. 總體經(jīng)驗?zāi)B(tài)細(xì)分法提取血流超聲多普勒信號的研究[J]. 電子學(xué)報, 2014, 42(7): 1424-1428. LIN Wenjing, ZHANG Yufeng, ZHANG Kexin, et al. Extraction of Doppler ultrasound blood signals using the delicate separation method based on the EEMD algorithm [J]. Acta Electronica Sinica, 2014, 42(7): 1424-1428. 余煒, 周婭, 馬晶晶, 等. 基于EMD和LVQ的信號特征提取及分類方法[J]. 數(shù)據(jù)采集與處理, 2014, 29(5): 683-688. YU Wei, ZHOU Ya, MA Jingjing, et al. Signal feature extraction and classification method based on EMD and LVQ neural network[J]. Journal of Data Acquisition and Processing, 2014, 29(5): 683-688. 王玉靜, 康守強(qiáng), 張云, 等. 基于集合經(jīng)驗?zāi)B(tài)分解敏感固有模態(tài)函數(shù)選擇算法的滾動軸承狀態(tài)識別方法[J]. 電子與信息學(xué)報, 2014, 36(3): 595-600. doi: 10.3724/SP.J.1146.2013. 00434. WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics Information Technology, 2014, 36(3): 595-600. doi: 10.3724/SP.J.1146.2013.00434. 肖春生, 察豪, 周沫. 基于EMD的海雜波特性與目標(biāo)檢測[J]. 雷達(dá)與對抗, 2011, 31(2): 1-4. XIAO Chunsheng, CHA Hao, and ZHOU Mo. The EMD- based sea clutter characteristics and target detection[J]. Radar ECM, 2011, 31(2): 1-4. 王幅友, 劉剛, 袁贛南. 基于EMD算法的海雜波信號去噪[J]. 雷達(dá)科學(xué)與技術(shù), 2010, 8(2): 177-182. WANG Fuyou, LIU Gang, and YUAN Gannan. EMD-based sea clutter signal denoising[J]. Radar Science and Technology, 2010, 8(2): 177-182. 關(guān)鍵, 張建. 基于固有模態(tài)能量熵的微弱目標(biāo)檢測算法[J]. 電子與信息學(xué)報, 2011, 33(10): 2494-2499. doi: 10.3724/SP.J. 1146.2011.00147. GUAN Jian and ZHANG Jian. Weak target detection based on intrinsic mode energy entropy[J]. Journal of Electronics Information Technology, 2011, 33(10): 2494-2499. doi: 10.3724/SP.J.1146.2011.00147. 劉寧波, 關(guān)鍵, 宋杰, 等. 海雜波頻譜的多重分形特性分析[J]. 中國科學(xué):信息科學(xué), 2013, 43(6): 768-782. LIU Ningbo, GUAN Jian, SONG Jie, et al. Multifractal property of sea clutter frequency spectrum[J]. Scientia Sinica Informationis, 2013, 43(6): 768-783. HU Jing, TUNG Wenwen, and GAO Jianbo. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136-143. HANSEN V G. Nonparametric radar extraction using a generalized sign test[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(5): 942-950. SALMASI M and MODARRES-HASHEMI M. Design and analysis of fractal detector for high resolution radars[J]. Chaos, Solitons Fractals, 2009, 40(5): 2133-2145. -
計量
- 文章訪問數(shù): 1608
- HTML全文瀏覽量: 227
- PDF下載量: 351
- 被引次數(shù): 0