基于博弈分析的眾包交通監(jiān)測隱私保護機制
doi: 10.11999/JEIT150721
基金項目:
國家自然科學(xué)基金(61472418, 61202099),中國科學(xué)院先導(dǎo)專項基金(XDA06040100)
Enhancing Privacy Preserving for Crowdsourced Monitoring A Game Theoretic Analysis Based Approach
Funds:
The National Natural Science Foundation of China (61472418, 61202099), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA06040100)
-
摘要: 眾包交通監(jiān)測利用移動終端上傳的GPS位置信息實時感知交通狀況,具有廣闊的應(yīng)用前景。然而,上傳的GPS信息會泄露用戶隱私。該文基于博弈論分析用戶上傳行為,提出隱私保護的優(yōu)化上傳機制。首先建立用戶上傳行為與路況服務(wù)質(zhì)量和隱私泄露之間的關(guān)系,據(jù)此構(gòu)建不完全信息博弈模型,以便分析用戶上傳行為;然后,根據(jù)用戶上傳博弈納什均衡,提出用戶終端可控的隱私保護優(yōu)化上傳機制。理論分析表明,該文提出的上傳機制最大化用戶效用,具有激勵相容特性;通過真實數(shù)據(jù)實驗驗證,上傳機制能夠提高用戶的隱私保護度,以及算法的激勵相容特性。
-
關(guān)鍵詞:
- 眾包監(jiān)測 /
- 位置隱私 /
- 不完全信息博弈 /
- 均衡
Abstract: Crowdsourcing traffic monitoring is a promising application, which exploits ubiquitous mobile devices to upload GPS samples to obtain live road traffic. However, uploading the sensitive location information raises significant privacy issues. By analyzing the upload behavior of mobile users, this paper designs a privacy preserving traffic data collection mechanism. Using the relationships among the traffic service quality, privacy loss and the upload behavior, an incomplete information game is built to analyze the upload behavior of users. Based on the existence and uniqueness of Nash equilibrium in this game, a user-centric privacy preserving traffic data collection mechanism is proposed, which can maximize the utilities of users, and this mechanism has a feature of incentive compatible. Finally, the experimental results on real world traffic data confirm the effectiveness of privacy protecting and the feature of incentive compatible.-
Key words:
- Crowdsourced monitoring /
- Location privacy /
- Incomplete information game /
- Equilibrium
-
YANG D J, XUE G L, FANG X, et al. Incentive mechanisms for crowdsensing: crowdsourcing with smartphones[J]. IEEE/ACM Transactions on Networking, 2015, 99: 1-13. GAO S, MA J F, SHI W S, et al. TrPF: A trafectory privacy-preserving framework for participatory sensing[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(6): 874-887. MOHAN P, PADMANABHAN V N, and RAMJEE R. Nericell: rich monitoring of road and traffic conditions using mobile smartphones[C]. Proceedings of the ACM Conference on Embedded Networked Sensor Systems, North Carolina, 2008: 323-336. MONTJOYE Y A, HIDALGO C A, VERLEYSEN M, et al. Unique in the crowd: The privacy bounds of human mobility[R]. Nature Science Report, Cambridge, 2013. CHRIS M, DAVID Y, and NUNG Y. Privacy vulnerability of published anonymous mobility traces[J]. IEEE Transactions on Networking, 2013, 21(3): 720-733. 孫利民, 李紅, 王笑寒, 等. 物聯(lián)網(wǎng)位置隱私保護綜述[J]. 軟件學(xué)報, 2014, 25(s1): 1-10. SUN Limin, LI Hong, WANG Xiaohan, et al. Survey on the location privacy preservation in the internet of things[J]. Journal of Software, 2014, 25(s1): 1-10. SHI E, CHAN T H, RIEFFEL E, et al. Privacy-preserving aggregation of time-series data[C]. Proceedings of 18th Network Distributed System Security Symposium, California, 2011: 1-17. HOH B, GRUTESER M, XIONG H, et al. Achieving guaranteed anonymity in gps traces via uncertainty-aware path cloaking [J]. IEEE Transactions on Mobile Computing, 2010, 9(8): 1089-1107. PALANISAMY B and LIU L. Attack-resilient mix-zones over road networks: architecture and algorithms[J]. IEEE Transactions on Mobile Computing, 2015, 14(3): 495-508. LIU X X, ZHAO H, PAN M, et al. Traffic-aware multiple mix zone placement for protecting location privacy[C]. Proceedings of the 31rd Annual IEEE International Conference on Computer Communications, Florida, 2012: 972-980. HOH B, IWUCHUKWU T, JACOBSON Q, et al. Enhancing privacy and accuracy in probe vehicle based traffic monitoring via virtual trip lines[J]. IEEE Transactions on Mobile Computing, 2012, 11(5): 849-864. SHOKRI R, THEODORAKOPOULOS G, BOUDEC J L, et al. Quantifying location privacy[C]. Proceedings of IEEE Symposium on Security and Privacy, California, 2011: 247-262. FREUDIGER J, MANSHAEI M H, HUBAUX J P, et al. Non-cooperative location privacy[J]. IEEE Transactions on Dependable and Secure Computing, 2013, 10(2): 84-98. 葛國棟, 郭云飛, 劉彩霞, 等. 內(nèi)容中心網(wǎng)絡(luò)中面向隱私保護的協(xié)作緩存策略[J]. 電子與信息學(xué)報, 2015, 37(5): 1220-1226. doi: 10.11999/JEIT140874. GE Guodong, GUO Yunfei, LIU Caixia, et al. A collaborative caching strategy for privacy protection in content centric networking[J]. Journal of Electronics Information Technology, 2015, 37(5): 1220-1226. doi: 10.11999/JEIT- 140874. 黃開枝, 洪穎, 羅文宇, 等. 基于演化博弈機制的物理層安全協(xié)作方法[J]. 電子與信息學(xué)報, 2015, 37(1): 193-199. doi:10. 11999/JEIT140309. HUANG Kaizhi, HONG Ying, LUO Wenyu, et al. A method for physical layer security cooperation based on evolutionary game[J]. Journal of Electronics Information Technology, 2015, 37(1): 193-199. doi: 10.11999/JEIT140309. SHOKRI R, THEODORAKOPOULOS G, TRONCOSO C, et al. Protecting location privacy: Optimal strategy against localization attacks[C]. Proceedings of 19th ACM Conference on Computer and Communications Security, California, 2012: 617-627. -
計量
- 文章訪問數(shù): 1228
- HTML全文瀏覽量: 225
- PDF下載量: 606
- 被引次數(shù): 0