一種幅度信息輔助多伯努利濾波算法
doi: 10.11999/JEIT150683
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61171122, 61201318, 61471019, 61501011),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(YWF-15-GJSYS- 068)
A Multi-Bernoulli Filtering Algorithm Using Amplitude Information
Funds:
The National Natural Science Foundation of China (61171122, 61201318, 61471019, 61501011), The Fundamental Research Funds for the Central Universities (YWF- 15-GJSYS-068)
-
摘要: 在許多多目標(biāo)跟蹤場(chǎng)景中,目標(biāo)返回的幅度通常強(qiáng)于虛警雜波返回的幅度。通過建立更加準(zhǔn)確的包含幅度信息的目標(biāo)和虛警雜波似然函數(shù),可提高多目標(biāo)估計(jì)精度。該文提出一種基于隨機(jī)有限集的幅度信息輔助多伯努利濾波(Amplitude Information Assistant Multi-Bernoulli Filter, AIA-MBerF)算法。該算法通過建立幅度似然函數(shù)將幅度信息引入到多伯努利濾波的更新過程中,并給出針對(duì)線性和非線性模型的高斯混合(Gaussian Mixture, GM)和序貫蒙特卡洛(Sequential Monte Carlo, SMC)實(shí)現(xiàn)方法。仿真結(jié)果表明,該濾波算法相比于傳統(tǒng)多伯努利濾波(Multi-Bernoulli Filter, MBerF)無論GM還是SMC實(shí)現(xiàn)都可獲得更加準(zhǔn)確穩(wěn)定的目標(biāo)數(shù)和對(duì)應(yīng)的目標(biāo)狀態(tài)估計(jì)。
-
關(guān)鍵詞:
- 多目標(biāo)跟蹤 /
- 隨機(jī)有限集 /
- 幅度信息 /
- 多伯努利濾波
Abstract: In many multi-target tracking scenarios, the amplitude of target returns are stronger than those coming from false alarms. This amplitude information can be used to improve the multi-target state estimation by obtaining more accurate target and false-alarm likelihoods. In this paper, a novel multi-Bernoulli filtering algorithm is proposed, which is based on the random finite set and incorporate the amplitude information. The amplitude likelihood functions are derived to incorporate the amplitude information into the multi-Bernoulli filter in the update step. In addition, a Gaussian Mixture (GM) implementation for the linear model and a Sequential Monte Carlo (SMC) implementation for the non-linear model are proposed. Simulation results for Gaussian Mixture and Sequential Monte Carlo implementations show that the proposed filter demonstrates a significant improvement than conventional multi-Bernoulli filter in the estimation accuracy of both the number of targets and their states. -
MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Norwood: Artech House, 2007: 565-682. LERRO D and BAR-SHALOM Y. Automated tracking with target amplitude information[C]. American Control Conference, USA, San Diego, 1990: 2875-2880. VAN KEUK G. Multihypothesis tracking using incoherent signal-strength information[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1164-1170. LA Scala B F. Viterbi data association tracking using amplitude information[C]. Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 698-705. MAHLER R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178. MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543. VO B N and MA W. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 40914104. VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567. 胡子軍, 張林讓, 張鵬, 等. 基于高斯混合帶勢(shì)概率假設(shè)密度濾波器的未知雜波下多機(jī)動(dòng)目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報(bào), 2015, 37(1): 116-122.doi: 10.11999/JEIT140218. HU Zijun, ZHANG Linrang, ZHANG Peng, et al. Gaussian mixture cardinalized probability hypothesis density filter for multiple maneuvering target tracking under unknown clutter situation[J]. Journal of Electronics Information Technology, 2015, 37(1): 116-122. doi: 10.11999/JEIT140218. 占榮輝, 劉盛啟, 歐建平, 等. 基于序貫蒙特卡羅概率假設(shè)密度濾波的多目標(biāo)檢測(cè)前跟蹤改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2593-2599. doi: 10.3724/SP.J.1146.2013.02029. ZHAN Ronghui, LIU Shengqi, OU Jianping, et al. Improved multitarget track before detect algorithm using the sequential monte carlo probability hypothesis density filter[J]. Journal of Electronics Information Technology, 2014, 36(11): 2593-2599. doi: 10.3724/SP.J.1146.2013.02029. CLARK D and BELL J. Convergence results for the particle PHD filter[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661. CLARK D and VO B T. Convergence analysis of the Gaussian mixture PHD filter[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212. CLARK D, RISTIC B, VO BN, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 26-37. GOSTAR A K, HOSEINNEZHAD R, and BAB- HADIASHAR A. Sensor control for multi-object tracking using labeled multi-Bernoulli filter[C]. The 17th International Conference on Information Fusion, Salamanca, 2014: 1-8. CHONG N, WONG S, NORDHOLM S, et al. Multiple sound source tracking and identification via degenerate unmixing estimation technique and cardinality balanced multi-target multi-bernoulli filter (DUET-CBMeMBer) with track management[C]. Asia-Pacific Signal and Information Processing Association, Siem Reap, 2014: 1-5. KIM D Y and JEON M. Robust multi-Bernoulli filtering for visual tracking[C]. International Conference on Control, Automation and Information Sciences (ICCAIS). Gwangju, 2014: 47-51. 胡子軍, 張林讓, 房嘉奇. 多站無源雷達(dá)多起伏目標(biāo)檢測(cè)前跟蹤算法[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 651-657. doi: 10.11999/JEIT140466. HU Zijun, ZHANG Linrang, and FANG Jiaqi. A Track- before-detect algorithm for tracking multiple fluctuating targets using passive multistatic radar[J]. Journal of Electronics Information Technology, 2015, 37(3): 651-657. doi:10.11999/ JEIT140466. SKOLNIK M I. Introduction to Radar[M]. New York: McGraw-Hill, 2002: 148-256. VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423. LIAN F, LI C, HAN C, et al. Convergence analysis for the SMC-MeMBer and SMC-CBMeMBer filters[J]. Journal of Applied Mathematics, 2012, 2012: 1-25. SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. -
計(jì)量
- 文章訪問數(shù): 1472
- HTML全文瀏覽量: 120
- PDF下載量: 480
- 被引次數(shù): 0