基于Golay互補(bǔ)序列的壓縮感知稀疏信道估計(jì)算法
doi: 10.11999/JEIT150594
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61372127),湖南省自然科學(xué)基金(13JJ3065)
Compressed Sensing Channel Estimation Algorithm Based on Deterministic Sensing with Golay Complementary Sequences
Funds:
The National Natural Science Foundation of China (61372127), The Natural Science Foundation of Hunan Province (13JJ3065)
-
摘要: 該文針對(duì)現(xiàn)有基于壓縮感知的信道估計(jì)方法峰均功率比高、計(jì)算量大等問(wèn)題,使用確定性格雷(Golay)序列作為訓(xùn)練序列對(duì)稀疏信道進(jìn)行信道估計(jì),在接收端實(shí)現(xiàn)了對(duì)信道沖激響應(yīng)的估計(jì),給出了估計(jì)模型和具體的算法推演,推導(dǎo)了該方法的峰均功率比,并與基于隨機(jī)高斯序列的壓縮感知信道估計(jì)方法的性能、峰均功率比和計(jì)算量進(jìn)行了比較。仿真實(shí)驗(yàn)表明:格雷序列以及隨機(jī)高斯序列兩種序列都可以重構(gòu)出稀疏信道非零抽頭系數(shù),但是格雷序列對(duì)稀疏信道沖激響應(yīng)的確定性觀測(cè)估計(jì)值的均方誤差(MSE)和匹配度性能(Match Rate, MR)均優(yōu)于隨機(jī)高斯序列,計(jì)算量降低了許多,且在OFDM系統(tǒng)中峰均功率比大大降低。
-
關(guān)鍵詞:
- 信道估計(jì) /
- 壓縮感知 /
- Golay互補(bǔ)序列 /
- 稀疏信道
Abstract: To deal with problems of large Peak-to-Average Power Ratio (PAPR) and computation complexity in existing channel estimation algorithm based on compressed sensing, Golay complementary sequence is utilized to estimate sparse channel as a deterministic training sequence. Estimation model and algorithm are provided in detail. The PAPR of this method is deduced and its performance, PAPR and computation complexity are compared with Gaussian random sequence. The simulation result indicates that Golay sequence and Gaussian random sequence can reconstruct nonzero tap coefficients. But Golay sequence outperforms Gaussian random sequence both in the Mean Square Error (MSE) and Match Rate (MR) for estimating sparse channel impulse response. And the computation and PAPR are reduced significantly in the OFDM system. -
葉新榮, 朱衛(wèi)平, 張愛(ài)清, 等. OFDM系統(tǒng)雙選擇性慢衰落信道的壓縮感知估計(jì)[J].電子與信息學(xué)報(bào), 2015, 37(1): 169-174. doi: 10.11999/JEIT140247. YE Xinrong, ZHU Weiping, ZHANG Aiqing, et al. Compressed sensing based on doubly-selective slow-fading channel estimation in OFDM systems[J]. Journal of Electronics Information Technology, 2015, 37(1): 169-174. doi: 10.11999/JEIT140247. TAUBOCK G and HLAWATSCH F. A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Las Vegas, NV, 2008: 2885-2888. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. TSAIG Y and DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571. CANDES E and ROMBERG J. Robust signal recovery from incomplete observations[C]. IEEE International Conference on Image Processing, Atlanta, GA, 2006: 1281-1284. CANDES E, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(3): 489-509. CANDES E and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. BAJWA W U, HAUPT J, RAZ G, et al. Compressed channel sensing[C]. CISS 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, 2008: 5-10. COHEN K M, ATTIAS C, and FARBMAN B. Channel estimation in UWB channels using compressed sensing[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014: 1966-1970. WANG Weidong, YANG Junan, and ZHANG Chun. A novel compressed sensing ultra-wideband channel estimation method based on non-convex optimization[J]. International Journal of Communication Systems, 2015, 28(3): 472-482. SHAKERI Z, BAJWA W U, et al. Deterministic selection of pilot tones for compressive estimation of MIMO-OFDM channels[C]. 49th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 2015: 1-6. KHOSRAVI M and MASHHADI S. Joint pilot power pattern design for compressive OFDM channel estimation[J]. IEEE Communications Letters, 2015, 19(1): 50-53. CHEN Xin and FANG Yong. Compressed sensing based scattering channel estimation for OFDM system under the scenarios of High-speed Railway[C]. 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, 2014, 539-543. 謝志斌,薛同思,田雨波,等.一種稀疏增強(qiáng)的壓縮感知MIMO-OFDM信道估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 665-670. doi: 10.3724/SP.J.1146.2012.00860. XIE Zhibin, XUE Tongsi, TIAN Yubo, et al. A sparsity enhanced channel estimation algorithm based on compressed sensing in MIMO-OFDM systems[J]. Journal of Electronics Information Technology, 2013, 35(3): 665-670. doi: 10.3724/ SP.J.1146.2012.00860. BAJWA W U, JARVIS H, SAYEED A M, et al. Compressed channel sensing: A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076. JARVIS H, BAJWA W U, and RAZ G. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875. GUAN G, QUN W, and WEI P. Sparse multipath channel estimation using compressive sampling matching pursuit algorithm[C]. IEEE Vehicular Technology Society Asia Pacific Wireless Communication Symposium, Piscataway, 2010: 19-22. LI K, GAN L, and LING C. Convolutional compressed sensing using deterministic sequences[J]. IEEE Transactions on Signal Processing, 2012, 61(3): 740-752. EIWEN D, TAUBOCK G, HLAWATSCH F, et al. Multichannel channel group sparsity methods for compressive channel stimation in doubly selective multicarrier MIMO systems[OL]. http//arxiv.org/abs/1407.3474, 2014. GOLAY M J E. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82-87. GRAY R M. Toeplitz and cimulant matrices: A review[J]. Communication and Information Theoy, 2006, 2(3): 155-239. -
計(jì)量
- 文章訪問(wèn)數(shù): 1548
- HTML全文瀏覽量: 198
- PDF下載量: 655
- 被引次數(shù): 0