一種用于水聲通信的噴泉碼最大似然譯碼方法
doi: 10.11999/JEIT150572
基金項(xiàng)目:
國家自然科學(xué)基金(61471351),中國科學(xué)院聲學(xué)研究所所長擇優(yōu)基金(Y454101231)
Maximum Likelihood Decoding of Fountain Codes in Underwater Acoustic Communication
Funds:
The National Natural Science Foundation of China (61471351), Preferred Foundation of Director of Institute of Acoustics, CAS (Y454101231)
-
摘要: 針對水聲通信特點(diǎn),研究隨機(jī)線性噴泉碼及最大似然譯碼,在分塊數(shù)較小的包傳輸中糾正刪除錯誤。傳統(tǒng)的最大似然譯碼為整包統(tǒng)一處理,譯碼延遲大。該文提出一種逐行累增的高斯消去方法,將譯碼過程劃分到各塊到達(dá)時隙中執(zhí)行,利用二進(jìn)制分布求和的概率公式對單塊到達(dá)所需計(jì)算量進(jìn)行分析。在實(shí)際水聲通信處理平臺上進(jìn)行了驗(yàn)證,滿足實(shí)時計(jì)算需求,可用于水下圖像、傳感器數(shù)據(jù)等的傳輸。
-
關(guān)鍵詞:
- 水聲通信 /
- 噴泉碼 /
- 高斯消去法 /
- 隨機(jī)線性噴泉碼
Abstract: Considering the characteristics of underwater acoustic communication, random linear fountain codes with maximum likelihood decoding are studied to correct erasure errors in the short packet transmission. In existing maximum likelihood decoding methods, processing begins when all the necessary blocks are available, resulting to the unacceptable decoding delay. An increment Gaussian elimination method is proposed to decrease the decoding delay by utilizing the time-slots of every block. The computation complexity is analyzed based on the principle of the probability distribution of the summation of binary random variables. The real-time ability of the proposed method is verified on the low-cost DSP chip for the underwater acoustic modem. The method is applicable to underwater transmissions of images, and sense data. -
LUBY M. LT codes[C]. Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, 2002: 271-282. doi: 10.1109/SFCS.2002.1181950. SHOKROLLAHI A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551-2567. doi: 10.1109/ TIT.2006.874390. HANZO L, MAUNDER R, CHEN H, et al. Hybrid-ARQ- aided short fountain codes designed for block-fading channels[J]. IEEE Transactions on Vehicular Technology, 2015. doi: 10.1109/TVT.2015.2388632. 趙旦峰, 梁明珅, 段晉玨. 水聲網(wǎng)絡(luò)中噴泉碼的應(yīng)用研究現(xiàn)狀與發(fā)展前景[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(9): 1838-1843. doi: 10.3969/ J.ISSN.1001-506X.2014.09.27. ZHAO Danfeng, LIANG Mingshen, and DUAN Jinjue. Survey of fountain codes in underwater acoustic sensor networks[J]. Systems Engineering and Electronics, 2014, 36(9): 1838-1843. doi: 10.3969/J.ISSN.1001-506X.2014.09.27. NICOPOLITIDIS P, PAPADIMITRIOU G I, and POMPORTSIS A S. Adaptive data broadcasting in underwater wireless networks[J]. IEEE Journal of Oceanic Engineering, 2010, 35(3): 623-634. doi: 10.1109/JOE.2010. 2049674. CHAN C Y M and MOTANI M. An integrated energy efficient data retrieval protocol for underwater delay tolerant networks[C]. Proceedings of the OCEANS, Aberdeen, 2007: 1-6. doi: 10.1109/OCEANSE.2007.4302341. CASARI P, ROSSI M, and ZORZI M. Towards optimal broadcasting policies for HARQ based on fountain codes in underwater networks[C]. Proceedings of the 2008 Fifth Annual Conference on Wireless on Demand Network Systems and Services, Garmisch-Partenkirchen, 2008: 11-19. doi: 10. 1109/WONS.2008.4459350. ZHOU Z, MO H, ZHU Y, et al. Fountain code based adaptive multi-hop reliable data transfer for underwater acoustic networks[C]. Proceedings of the 2012 IEEE International Conference on Communications, Ottawa, 2012: 6396-6400, doi: 10.1109/ICC.2012.6364846. CUI Y, QING J, GUAN Q, et al. Stochastically optimized fountain based transmissions over underwater acoustic channels[J]. IEEE Transactions on Vehicular Technology, 2014, 64(4): 2108-2112. doi: 10.1109/TVT.2013.01958. CHITRE M and SOH W S. Reliable point-to-point underwater acoustic data transfer: to juggle or not to juggle?[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 93-103. doi: 10.1109/JOE.2014.2311692. SCHOTSCH B, SCHEPKER H, and VARY P. The performance of short random linear fountain codes under maximum likelihood decoding[C]. Proceedings of the 2011 IEEE International Conference on Communications, Kyoto, 2011: 1-5. doi: 10.1109/ICC.2011.5962476. MACKAY D J C. Fountain codes[J]. IEE Proceedings- Communications, 2005, 152(6): 1062-1068. doi: 10.1049/IP- COM: 20050237. LIVA G, PAOLINI E, and CHIANI M. Performance versus overhead for fountain codes over Fq[J]. IEEE Communications Letters, 2010, 14(2): 178-180. doi: 10.1109/ LCOMM.2010.02.092080. RICHARDSON T J and URBANKE R L. Efficient encoding of low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 638-656. doi: 10.1109/ 18.910579. 朱維慶, 朱敏, 武巖波, 等. 載人潛水器蛟龍?zhí)柕乃曂ㄐ判盘柼幚韀J]. 聲學(xué)學(xué)報(bào), 2012, 37(6): 565-573. doi: 10. 15949/J.CNKI.0371-0025.2012.06.001. ZHU Weiqing, ZHU Min, WU Yanbo, et al. Signal processing in underwater acoustic communication system for manned deep submersible Jiaolong[J]. Acta Acustica, 2012, 37(6): 565-573. doi: 10.15949/ J.CNKI.0371-0025.2012.06.001. 劉國, 于文慧, 吳家驥, 等. 基于系統(tǒng)Raptor碼不等差錯保護(hù)的圖像壓縮傳輸[J]. 電子與信息學(xué)報(bào), 2013, 35(11): 2554-2559. doi: 10.3724/SP.J.1146.2012.01362. LIU Guo, YU Wenhui, WU Jiaji, et al. Compressed image transmission based on systematic Raptor codes with unequal error protection[J]. Journal of Electronics Information Technology, 2013, 35(11): 2554-2559. doi: 10.3724/SP.J.1146. 2012.01362. 黃太奇, 易本順, 姚渭箐, 等. 基于規(guī)則變量節(jié)點(diǎn)度和擴(kuò)展窗噴泉碼的不等差錯保護(hù)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1931-1936. doi: 10.11999/JEIT141530. HUANG Taiqi, YI Benshun, YAO Weiqing, et al. Novel scheme of unequal error protection based on regularized variable-node and expanding window fountain codes[J]. Journal of Electronics Information Technology, 2015, 37(8): 1931-1936. doi: 10.11999/JEIT141530. -
計(jì)量
- 文章訪問數(shù): 1598
- HTML全文瀏覽量: 163
- PDF下載量: 525
- 被引次數(shù): 0