高分辨率SAR定標(biāo)參考目標(biāo)輻射特性的校正方法
doi: 10.11999/JEIT150570
基金項(xiàng)目:
對地觀測系統(tǒng)國家科技重大專項(xiàng)(GFZX0403220402, GFZX04032204)
Correction Methods of Calibration Reference Targets RadiometricCharacteristic in High-resolution SAR Systems
Funds:
National Science and Technology Major Project on Earth Observation System (GFZX0403220402, GFZX04032204)
-
摘要: 定標(biāo)參考目標(biāo)雷達(dá)截面積(RCS)的頻率、入射角相關(guān)性是一個(gè)固有性質(zhì),對于常規(guī)SAR系統(tǒng),在小帶寬/窄方位波束條件下通常近似認(rèn)為目標(biāo)具有恒定的后向散射特性,即RCS為一常數(shù);然而,對于高分辨率SAR系統(tǒng),繼續(xù)用中心頻點(diǎn)、方位角處的RCS表示大信號(hào)帶寬/寬方位波束條件下的RCS,將會(huì)直接影響輻射定標(biāo)的準(zhǔn)確性。鑒于此,該文提出基于標(biāo)準(zhǔn)數(shù)據(jù)或參考定標(biāo)體的目標(biāo)輻射特性校正方法,暗室地基SAR系統(tǒng)仿真結(jié)果表明,在目標(biāo)輻射特性校正前后,點(diǎn)目標(biāo)積分能量相差1.2 dB;實(shí)測數(shù)據(jù)處理結(jié)果顯示,經(jīng)過參考目標(biāo)輻射特性校正,SAR圖像中點(diǎn)目標(biāo)旁瓣更加對稱,且方位向主瓣寬度變窄,在時(shí)域更接近理想點(diǎn)目標(biāo)沖激響應(yīng),從而驗(yàn)證了校正算法的有效性。
-
關(guān)鍵詞:
- 高分辨率SAR系統(tǒng) /
- 輻射定標(biāo) /
- 雷達(dá)截面積 /
- 參考目標(biāo)輻射特性校正 /
- 地基SAR系統(tǒng)
Abstract: The calibration reference point targets Radar Cross Section (RCS) is a inherent property depending on frequency and incidence angle, for traditional SAR systems, which can be approximately regarded as a constant under the condition of narrowband and narrow beam. However, for high-resolution SAR systems, replacing the RCS in the case of wideband and wide beam by the RCS of central frequency and azimuth aspect, will result in an inaccurate radiometric calibration output. In this paper, correction methods of reference point targets in the echo domain or in the complex image domain are presented. From the experimental result of simulation and ground-based SAR, it can be seen that the absolute calibration factor varies over 1.2 dB before and after the reference point target correction. The results of real data show that point targets in the SAR image are more symmetric after correction of reference targets radiometric characteristic, and the main lobe in azimuth becomes narrower, which is more close to ideal point target impulse response in time domain, thus validating the effectiveness of the correction algorithm. -
CURLANDER J C. 韓傳釗譯. 合成孔徑雷達(dá)系統(tǒng)與信號(hào)處理[M]. 北京: 電子工業(yè)出版社, 2006: 217-220. CURLANDER J C. Synthetic Aperture Radar: Systems and Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2006: 217-220. 李震, 廖靜娟. 合成孔徑雷達(dá)地表參數(shù)反演模型與方法[M]. 北京: 科學(xué)出版社, 2011: 24-33. LI Zhen and LIAO Jingjuan. Synthetic Aperture Radar Earth Surface Parameters Inversion Models and Approaches[M]. Beijing: Science Press, 2011: 24-33. FREEMAN A. SAR calibration: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(6): 1107-1123. GRAY A L, PARIS W V, and CHARLES E L. Synthetic aperture radar calibration using reference reflectors[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 374-382. 鄒鯤. 低頻UWB-SAR校準(zhǔn)技術(shù)研究[D]. [博士論文], 國防科學(xué)技術(shù)大學(xué), 2005: 32-46. ZOU Kun. Research on low frequency UWB-SAR calibration technique[D]. [Ph.D. dissertation], National University of Defense Technology, 2005: 32-46. VIET T V, THOMAS K S, and MATS I P. An impulse response function for evaluation of UWB SAR imaging[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3927-3932. VIET T V, THOMAS K S, and MATS I P. On synthetic aperture radar azimuth and range resolution equations [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1764-1769. ULANDER L M H. Impulse response function for Ultra-wideband SAR[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 798-801. 林新越. 高分辨率SAR參考目標(biāo)輻射特性分析與校正方法研究[D]. [碩士論文], 中國科學(xué)院電子學(xué)研究所, 2010: 63-99. LIN Xinyue. Research on analysis and calibration methods for high resolution SAR reference targets radiometric characteristics[D]. [Master dissertation], Institute of Electrics, Chinese Academy of Sciences, 2010: 63-99. BJORN J D, PHILIPP R L, MATTHIAS J, et al. Reference target correction based on point-target SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 951-958. BJORN J D and MARCO S. The radiometric measurement quantity for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5307-5313. Mehrdad SOUMEKH. Reconnaissance with ultra wideband UHF Synthetic Aperture Radar[J]. IEEE Signal Processing Magazine, 1995, 12(4): 21-39. Mehrdad SOUMEKH. Signal processing of wide bandwidth and wide beamwidth P-3 SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1122-1141. 孫金平. 機(jī)載聚束模式合成孔徑雷達(dá)的成像算法研究[D]. [博士論文], 北京航空航天大學(xué)研究生院, 2001: 24-47. SUN Jinping. Research on imaging algorithm of airborne spotlight mode synthetic aperture rada[D]. [Ph.D. dissertation], Graduate School of Beihang University, 2001: 24-47. CARRAR W G, GOODMAN R S, MAJEWSKI R M, et al. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston, Artech House, 1995: 90101. JAKOWATZ C V, WAHL D E, EICHEL P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. Boston, Kluwer Academic Publishers, 1996: 8295. 乞耀龍. 近景微波三維成像模型與方法研究[D]. [博士論文], 中國科學(xué)院電子學(xué)研究所, 2012: 42-75. QI Yaolong. Research on microwave three dimensional imaging model and method of close range[D]. [Ph.D. dissertation], Institute of Electrics, Chinese Academy of Sciences, 2012: 42-75. 孟大地, 丁赤飚. 一種用于寬帶機(jī)載SAR的空變相位誤差補(bǔ)償算法[J]. 電子與信息學(xué)報(bào), 2007, 29(10): 2375-2378. MENG Dadi and DING Chibiao. An algorithm for space variant phase error compensation of wideband airborne SAR[J]. Journal of Electronics Information Technology, 2007, 29(10): 2375-2378. 張麟兮, 李南京, 胡楚鋒, 等. 雷達(dá)目標(biāo)散射特性測試與成像診斷[M]. 北京: 中國宇航出版社, 2009: 146-206. ZHANG Linxi, LI Nanjin, HU Chufeng, et al. Test and Imaging Diagnosis of Radar Target Scattering Characteristics[M]. Beijing: China Astronautic Publishing House, 2009: 146-206. -
計(jì)量
- 文章訪問數(shù): 1847
- HTML全文瀏覽量: 316
- PDF下載量: 568
- 被引次數(shù): 0