一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

YUV空間中基于稀疏自動編碼器的無監(jiān)督特征學(xué)習(xí)

李祖賀 樊養(yǎng)余 王鳳琴

李祖賀, 樊養(yǎng)余, 王鳳琴. YUV空間中基于稀疏自動編碼器的無監(jiān)督特征學(xué)習(xí)[J]. 電子與信息學(xué)報, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557
引用本文: 李祖賀, 樊養(yǎng)余, 王鳳琴. YUV空間中基于稀疏自動編碼器的無監(jiān)督特征學(xué)習(xí)[J]. 電子與信息學(xué)報, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557
LI Zuhe, FAN Yangyu, WANG Fengqin. Unsupervised Feature Learning with Sparse Autoencoders in YUV Space[J]. Journal of Electronics & Information Technology, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557
Citation: LI Zuhe, FAN Yangyu, WANG Fengqin. Unsupervised Feature Learning with Sparse Autoencoders in YUV Space[J]. Journal of Electronics & Information Technology, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557

YUV空間中基于稀疏自動編碼器的無監(jiān)督特征學(xué)習(xí)

doi: 10.11999/JEIT150557
基金項目: 

陜西省科技統(tǒng)籌創(chuàng)新工程重點實驗室項目(2013SZS15- K02)

Unsupervised Feature Learning with Sparse Autoencoders in YUV Space

Funds: 

The Science and Technology Innovation Engineering Program for Shaanxi Provincial Key Laboratories (2013SZS15-K02)

  • 摘要: 現(xiàn)有無監(jiān)督特征學(xué)習(xí)算法通常在RGB色彩空間進行特征提取,而圖像和視頻壓縮編碼標準則廣泛采用YUV色彩空間。為了利用人類視覺特性和避免色彩空間轉(zhuǎn)換所消耗的計算量,該文提出一種基于稀疏自動編碼器在YUV色彩空間進行無監(jiān)督特征學(xué)習(xí)的方法。首先在YUV空間隨機采集圖像子塊并進行白化處理,然后利用稀疏自動編碼器進行無監(jiān)督局部特征學(xué)習(xí)。在預(yù)處理階段,針對YUV空間亮度和色度通道相互獨立的特性,提出一種將亮度和色度進行分離的白化措施。最后用學(xué)習(xí)到的局部特征在大尺寸圖像上進行卷積操作從而獲得全局特征,并送入圖像分類系統(tǒng)進行性能測試。實驗結(jié)果表明:只要對亮度分量進行適當(dāng)?shù)陌谆幚恚赮UV空間中的無監(jiān)督特征學(xué)習(xí)就能夠獲得相當(dāng)于甚至優(yōu)于RGB空間的彩色圖像分類性能。
  • BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
    COATES A, NG A Y, and LEE H. An analysis of single-layer networks in unsupervised feature learning[C]. Preceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, 2011: 215-223.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Preceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012: 1097-1105.
    MASCI J, Meier U, CIREAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Preceedings of the 21st International Conference on Artificial Neural Networks, Espoo, 2011: 52-59.
    LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11.
    VINCENT P, LAROCHELLE H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.
    YIN H, JIAO X, CHAI Y, et al. Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications, 2015, 42(7): 3368-3380.
    ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.
    LNGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11.
    LIU H L, Taniguchi T, TAKANO T, et al. Visualization of driving behavior using deep sparse autoencoder[C]. Preceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, 2014: 1427-1434.
    SERMANET P, KAVUKCUOGLU K, CHINTALA S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]. Proceedings of Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 3626-3633.
    SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1930-1943.
    SANKARAN A, PANDEY P, VATSA M, et al. On latent fingerprint minutiae extraction using stacked denoising sparse AutoEncoders[C]. Proceedings of the 2014 IEEE International Joint Conference on Biometrics (IJCB), Clearwater, 2014: 1-7.
    孫志軍, 薛磊, 許陽明. 基于深度學(xué)習(xí)的邊際 Fisher 分析特征提取算法[J]. 電子與信息學(xué)報, 2013, 35(4): 805-811. doi: 10.3724/SP.J1146.2012.00949.
    SUN Zhijun, XUE Lei, and XU Yangming. Marginal Fisher feature extraction algorithm based on deep learning[J]. Journal of Electronics Information Technology, 2013, 35(4): 805-811. doi: 10.3724/SP.J1146.2012.00949.
    劉高平, 趙杜娟, 黃華. 基于自編碼神經(jīng)網(wǎng)絡(luò)重構(gòu)的車牌數(shù)字識別[J]. 光電子激光, 2011, 22(1): 144-148.
    LIU Gaoping, ZHAO Dujuan, and HUANG Hua. Character recognition of license plate using autoencoder neural network reconstruction[J]. Journal of OptoelectronicsLaser, 2011, 22(1): 144-148.
    SUDHIR R and BABOO L D S S. An efficient CBIR technique with YUV color space and texture features[J]. Computer Engineering and Intelligent Systems, 2011, 2(6): 85-95.
    BELL A J and SEJNOWSKI T J. Edges are the independent components of natural scenes[C]. Proceedings of the 10th Annual Conference on Neural Information Processing Systems (NIPS), Denver, 1997: 831-837.
    鄭歆慰, 胡巖峰, 孫顯, 等. 基于空間約束多特征聯(lián)合稀疏編碼的遙感圖像標注方法研究[J]. 電子與信息學(xué)報, 2014, 36(8): 1891-1898. doi: 10.3724/SP.J1146.2013.01433.
    ZHENG Xinwei, HU Yanfeng, SUN Xian, et al. Annotation of remote sensing images using spatial constrained multi-feature joint sparse coding[J]. Journal of Electronics Information Technology, 2014, 36(8): 1891-1898. doi: 10.3724/SP.J1146.2013.01433.
    CIRESAN D C, MEIER U, MASCI J, et al. Flexible, high performance convolutional neural networks for image classificationC]. Proceedings of the 22nd?International Joint Conference on Artificial Intelligence, Barcelona, 2011: 1237-1242.
    BOUREAU Y L, PONCE J, and lEcUN Y. A theoretical analysis of feature pooling in visual recognition[C]. Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, 2010: 111-118.
    ZENG R, WU J, SHAO Z, et al. Quaternion softmax classifier[J]. Electronics Letters, 2014, 50(25): 1929-1930.?
  • 加載中
計量
  • 文章訪問數(shù):  1656
  • HTML全文瀏覽量:  238
  • PDF下載量:  549
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-08-25
  • 刊出日期:  2016-01-19

目錄

    /

    返回文章
    返回