YUV空間中基于稀疏自動編碼器的無監(jiān)督特征學(xué)習(xí)
doi: 10.11999/JEIT150557
-
2.
(西北工業(yè)大學(xué)電子信息學(xué)院 西安 710072) ②(鄭州輕工業(yè)學(xué)院計算機與通信工程學(xué)院 鄭州 450002)
基金項目:
陜西省科技統(tǒng)籌創(chuàng)新工程重點實驗室項目(2013SZS15- K02)
Unsupervised Feature Learning with Sparse Autoencoders in YUV Space
-
2.
(School of Electronics and Information, Northwestern Polytechnical University, Xi&rsquo
Funds:
The Science and Technology Innovation Engineering Program for Shaanxi Provincial Key Laboratories (2013SZS15-K02)
-
摘要: 現(xiàn)有無監(jiān)督特征學(xué)習(xí)算法通常在RGB色彩空間進行特征提取,而圖像和視頻壓縮編碼標準則廣泛采用YUV色彩空間。為了利用人類視覺特性和避免色彩空間轉(zhuǎn)換所消耗的計算量,該文提出一種基于稀疏自動編碼器在YUV色彩空間進行無監(jiān)督特征學(xué)習(xí)的方法。首先在YUV空間隨機采集圖像子塊并進行白化處理,然后利用稀疏自動編碼器進行無監(jiān)督局部特征學(xué)習(xí)。在預(yù)處理階段,針對YUV空間亮度和色度通道相互獨立的特性,提出一種將亮度和色度進行分離的白化措施。最后用學(xué)習(xí)到的局部特征在大尺寸圖像上進行卷積操作從而獲得全局特征,并送入圖像分類系統(tǒng)進行性能測試。實驗結(jié)果表明:只要對亮度分量進行適當(dāng)?shù)陌谆幚恚赮UV空間中的無監(jiān)督特征學(xué)習(xí)就能夠獲得相當(dāng)于甚至優(yōu)于RGB空間的彩色圖像分類性能。
-
關(guān)鍵詞:
- 圖像分類 /
- 無監(jiān)督特征學(xué)習(xí) /
- 稀疏自動編碼器 /
- 卷積神經(jīng)網(wǎng)絡(luò) /
- 深度學(xué)習(xí)
Abstract: Existing unsupervised feature learning algorithms usually extract features in RGB color space, but YUV color space is widely adopted in image and video compression standards. In order to take advantage of human visual characteristics and avoid the calculation consumption caused by color space conversion, an unsupervised feature learning approach in YUV space based on sparse autoencoders is presented. First, image patches in YUV space are randomly sampled and whitened, and then are fed into sparse autoencoders to learn local features in an unsupervised way. Considering the characteristic that the luminance channel and chrominance channels are independent in YUV space, a whitening method which treats the luminance and chrominance separately is proposed in the pre-processing step. Finally, features learned over local image patches are convolved with large-size images in order to get global feature activations. Global features are then sent into image classification systems for performance testing. Experimental results reveal that unsupervised feature learning in YUV space achieves similar or even slightly better performance in color image classification compared with that in RGB space as long as the luminance component is whitened properly. -
BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. COATES A, NG A Y, and LEE H. An analysis of single-layer networks in unsupervised feature learning[C]. Preceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, 2011: 215-223. KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Preceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012: 1097-1105. MASCI J, Meier U, CIREAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Preceedings of the 21st International Conference on Artificial Neural Networks, Espoo, 2011: 52-59. LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11. VINCENT P, LAROCHELLE H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408. YIN H, JIAO X, CHAI Y, et al. Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications, 2015, 42(7): 3368-3380. ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184. LNGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11. LIU H L, Taniguchi T, TAKANO T, et al. Visualization of driving behavior using deep sparse autoencoder[C]. Preceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, 2014: 1427-1434. SERMANET P, KAVUKCUOGLU K, CHINTALA S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]. Proceedings of Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 3626-3633. SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1930-1943. SANKARAN A, PANDEY P, VATSA M, et al. On latent fingerprint minutiae extraction using stacked denoising sparse AutoEncoders[C]. Proceedings of the 2014 IEEE International Joint Conference on Biometrics (IJCB), Clearwater, 2014: 1-7. 孫志軍, 薛磊, 許陽明. 基于深度學(xué)習(xí)的邊際 Fisher 分析特征提取算法[J]. 電子與信息學(xué)報, 2013, 35(4): 805-811. doi: 10.3724/SP.J1146.2012.00949. SUN Zhijun, XUE Lei, and XU Yangming. Marginal Fisher feature extraction algorithm based on deep learning[J]. Journal of Electronics Information Technology, 2013, 35(4): 805-811. doi: 10.3724/SP.J1146.2012.00949. 劉高平, 趙杜娟, 黃華. 基于自編碼神經(jīng)網(wǎng)絡(luò)重構(gòu)的車牌數(shù)字識別[J]. 光電子激光, 2011, 22(1): 144-148. LIU Gaoping, ZHAO Dujuan, and HUANG Hua. Character recognition of license plate using autoencoder neural network reconstruction[J]. Journal of OptoelectronicsLaser, 2011, 22(1): 144-148. SUDHIR R and BABOO L D S S. An efficient CBIR technique with YUV color space and texture features[J]. Computer Engineering and Intelligent Systems, 2011, 2(6): 85-95. BELL A J and SEJNOWSKI T J. Edges are the independent components of natural scenes[C]. Proceedings of the 10th Annual Conference on Neural Information Processing Systems (NIPS), Denver, 1997: 831-837. 鄭歆慰, 胡巖峰, 孫顯, 等. 基于空間約束多特征聯(lián)合稀疏編碼的遙感圖像標注方法研究[J]. 電子與信息學(xué)報, 2014, 36(8): 1891-1898. doi: 10.3724/SP.J1146.2013.01433. ZHENG Xinwei, HU Yanfeng, SUN Xian, et al. Annotation of remote sensing images using spatial constrained multi-feature joint sparse coding[J]. Journal of Electronics Information Technology, 2014, 36(8): 1891-1898. doi: 10.3724/SP.J1146.2013.01433. CIRESAN D C, MEIER U, MASCI J, et al. Flexible, high performance convolutional neural networks for image classificationC]. Proceedings of the 22nd?International Joint Conference on Artificial Intelligence, Barcelona, 2011: 1237-1242. BOUREAU Y L, PONCE J, and lEcUN Y. A theoretical analysis of feature pooling in visual recognition[C]. Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, 2010: 111-118. ZENG R, WU J, SHAO Z, et al. Quaternion softmax classifier[J]. Electronics Letters, 2014, 50(25): 1929-1930.? -
計量
- 文章訪問數(shù): 1656
- HTML全文瀏覽量: 238
- PDF下載量: 549
- 被引次數(shù): 0