一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

旋轉不變梯度直方圖目標描述方法

諶德榮 王文斌 劉丙太 姜威 俞達 宮久路

諶德榮, 王文斌, 劉丙太, 姜威, 俞達, 宮久路. 旋轉不變梯度直方圖目標描述方法[J]. 電子與信息學報, 2016, 38(1): 23-28. doi: 10.11999/JEIT150546
引用本文: 諶德榮, 王文斌, 劉丙太, 姜威, 俞達, 宮久路. 旋轉不變梯度直方圖目標描述方法[J]. 電子與信息學報, 2016, 38(1): 23-28. doi: 10.11999/JEIT150546
CHEN Derong, WANG Wenbin, LIU Bingtai, JIANG Wei, YU Da, GONG Jiulu. Rotation-invariant Histogram of Oriented Gradients for Target Description[J]. Journal of Electronics & Information Technology, 2016, 38(1): 23-28. doi: 10.11999/JEIT150546
Citation: CHEN Derong, WANG Wenbin, LIU Bingtai, JIANG Wei, YU Da, GONG Jiulu. Rotation-invariant Histogram of Oriented Gradients for Target Description[J]. Journal of Electronics & Information Technology, 2016, 38(1): 23-28. doi: 10.11999/JEIT150546

旋轉不變梯度直方圖目標描述方法

doi: 10.11999/JEIT150546
基金項目: 

國家部委基金,北京理工大學基礎研究基金

Rotation-invariant Histogram of Oriented Gradients for Target Description

Funds: 

The Foundations of General Armament Department, Funds of Beijing Institute of Technology

  • 摘要: 論文為解決旋轉目標圖像匹配問題,提出旋轉不變梯度直方圖(RI-HOG)目標描述方法。RI-HOG描述方法首先將目標區(qū)域等間隔劃分為多個同心圓環(huán)并統(tǒng)計每個圓環(huán)的梯度直方圖(HoG),各圓環(huán)HoG累加的結果作為目標區(qū)域的主方向,再將各圓環(huán)HoG根據主方向旋轉相應角度作主方向歸一化處理,最后把旋轉后的各圓環(huán)HoG按空間順序連接后即生成RI-HOG。對實際采集圖像的仿真結果表明,基于RI-HOG的目標匹配算法在目標旋轉任意角度時依然能夠準確檢測到目標。RI-HOG具有很好的旋轉不變性。
  • 顏雪軍, 趙春霞, 袁夏. 一種魯棒的基于圖像對比度的局部特征描述方法[J]. 電子與信息學報, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.
    YAN Xuejun, ZHAO Chunxia, and YUAN Xia. A robust local feature descriptor based on image contrast[J]. Journal of Electronics Information Technology, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.
    TUYTELAARS T and MIKOLAJCZYK K. Local invariant feature detectors: a survey[J]. Foundations and Trends? in Computer Graphics and Vision, 2008, 3(3): 177-280. 
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    BAYA H, ESSA A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 886-893.
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
    SADEGHI M A and FORSYTH D. 30 Hz object detection with DPM V5[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 65-79.
    HARIHARAN B, ZITNICK C L, and DOLL?AR P. Detecting objects using deformation dictionaries[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014: 1995-2002.
    AHMED E, SHAKHNAROVICH G, and MAJI S. Knowing a good HOG filter when you see it: efficient selection of filters for detection[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 80-94.
    PONCE C and SINGER A. Computing steerable principal components of a large set of images and their rotations[J]. IEEE Transactions on Image Processing, 2011, 20(11): 3051-3062.
    SCHMIDT U and ROTH S. Learning rotation-aware features: from invariant priors to equivariant descriptors[C]. IEEE Conference on Computer Vision and, Pattern Recognition, Providence, RJ, USA, 2012: 2050-2057.
    TAKACS G, CHANDRASEKHAR V, TSAI S, et al. Unified real-time tracking and recognition with rotation-invariant fast features [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 934-941.
    TAKACS G, CHANDRASEKHAR V, TSAI S S, et al. Fast computation of rotation-invariant image features by an approximate radial gradient transform[J]. IEEE Transactions on Image Processing, 2013, 22(8): 2970-2982.
    謝志江, 呂波, 劉琴, 等. 旋轉不變性圖像模板匹配快速算法[J]. 吉林大學學報(工學版), 2013, 43(3): 711-717.
    XIE Zhijiang, LU Bo, LIU Qin, et al. Rotation-invariant and fast image template matching algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(3): 711-717.
    GAUGLITZ S, TURK M, and HLLERER T. Improving keypoint orientation assignment[C]. British Machine Vision Conference, Dundee, Scotland, 2011: 93.1-93.11.
  • 加載中
計量
  • 文章訪問數:  1694
  • HTML全文瀏覽量:  221
  • PDF下載量:  1078
  • 被引次數: 0
出版歷程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-09-16
  • 刊出日期:  2016-01-19

目錄

    /

    返回文章
    返回