交互式多系統(tǒng)跟蹤定位算法
doi: 10.11999/JEIT150543
基金項(xiàng)目:
中國(guó)科學(xué)院光電研究院創(chuàng)新項(xiàng)目(Y40802A1BY)
Interacting Multiple System Tracking Algorithm
Funds:
The Innovation Program of Academy of Opto- Electronics, Chinese Academy of Sciences (Y40B02A1BY)
-
摘要: 交互式思想在多模型定位中獲得廣泛應(yīng)用,但在多系統(tǒng)跟蹤定位中應(yīng)用較少。該文借鑒交互式思想提出交互式多系統(tǒng)跟蹤定位算法。該算法利用已獲得的估計(jì)信息進(jìn)行系統(tǒng)間定位信息的直接交互,然后進(jìn)行多系統(tǒng)并行濾波,并利用各系統(tǒng)濾波新息和方差對(duì)系統(tǒng)概率進(jìn)行實(shí)時(shí)更新,將估計(jì)結(jié)果按照系統(tǒng)概率加權(quán)融合輸出。通過(guò)跟蹤機(jī)動(dòng)目標(biāo)的仿真實(shí)例,可以看出該算法能夠根據(jù)定位系統(tǒng)的性能及時(shí)調(diào)整系統(tǒng)概率,有效改善多系統(tǒng)下目標(biāo)跟蹤定位性能。
-
關(guān)鍵詞:
- 多系統(tǒng)跟蹤 /
- 交互式 /
- 系統(tǒng)概率
Abstract: Interacting algorithm is widely used in multi-model target tracking, but it is rarely used in multi-system target tracking. In this paper, the interacting idea is used as a reference, and an interacting multi-system tracking algorithm is proposed. The direct interaction between systems is finished based on their former state estimation. Then system probabilities are updated using innovation and its covariance from the parallel filters. Finally, weighted fusing results are achieved on the updated probabilities. The simulation result of tracking a maneuvering target shows that system probability can be adjusted based on its performance immediately, and the tracking performance can be improved effectively.-
Key words:
- Multi-system tracking /
- Interacting /
- System probability
-
BLOM H A P and BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Transactions on Automatic Control, 1988, AC-33(8): 780-783. doi: 10.1109/9.1299 秦雷, 李君龍, 周荻. 基于交互式多模型算法跟蹤臨近空間目標(biāo)[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(7): 1243-1249. doi: 10.3969/j.issn.1001-506X.2014.07.04. QIN Lei, LI Junlong, and ZHOU Di. Tracking for near space target based on IMM algorithm[J]. Systems Engineering and Electronics[J]. 2014, 36(7): 1243-1249. doi: 10.3969/j.issn. 1001-506X.2014.07.04. SUN Can, XING Jianping, LIANG Haozhe, et al. S-IMM: Switched IMM algorithm for maneuvering target tracking[J]. Journal of Convergence Information Technology, 2012, 14(7): 461-468. 陳亮, 楊峻巍, 舒曉菂. 基于K-L信息因子的變結(jié)構(gòu)多模型算法模型集自適應(yīng)研究[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(12): 2459-2466. doi: 10.3969/j.issn.1001-506X.2013.12.03. CHEN Liang, YANG Junwei, and SHU Xiaodi. Model-set adaptive algorithm of variable structure multiple-model based on K-L criterion[J]. Systems Engineering and Electronics, 2013, 35(12): 2459-2466. doi:10.3969/j.issn. 1001-506X.2013.12.03. 羅笑冰, 王宏強(qiáng), 黎湘. 模型轉(zhuǎn)移概率自適應(yīng)的交互式多模型跟蹤算法[J]. 電子與信息學(xué)報(bào), 2005, 27(10): 1539-1541. LUO Xiaobing, WANG Hongqiang, and LI Xiang. Interacting multiple model algorithm with adaptive markov transition probabilities[J]. Journal of Electronics Information Technology, 2005, 27(10): 1539-1541. 周衛(wèi)東, 蔡佳楠, 孫龍. 具有最有模型傳遞矩陣的交互式多模型算法[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2014, 46(11): 101-106. ZHOU Weidong, CAI Jianan, and SUN Long. Interacting multiple model with optimal mode transition matrix[J]. Journal of Harbin Institute of Technology, 2014, 46(11): 101-106. 劉貴喜, 高恩克, 范春宇. 改進(jìn)的交互式多模型粒子濾波跟蹤算法[J]. 電子與信息學(xué)報(bào), 2007, 29(12): 2810-2813. LIU Guixi, GAO Enke, and FAN Chunyu. Tracking algorithms based on improved interacting multiple model particle filter[J]. Journal of Electronics Information Technology, 2007, 29(12): 2810-2813. 劉妹琴, 湯曉芳, 鄭世友, 等. 基于RUKF-IMM的非線(xiàn)性系統(tǒng)濾波[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 41(5): 57-63. LIU Meiqin, TANG Xiaofang, ZHENG Shiyou, et al. Filtering of nonlinear systems with measurement loss by RUKF- IMM[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(5): 57-63. 周衛(wèi)東, 劉萌萌, 楊永江. 基于多傳感器信息融合理論的交互式多模型算法[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 42(9): 82-89. doi: 10.3969/j.issn.1000-565X.2014.09.015. ZHOU Weidong, LIU Mengmeng, and YANG Yongjiang. An improved interacting multiple model algorithm based on multi-sensor information fusion theory[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(9): 82-89. doi: 10.3969/j.issn.1000-565X.2014.09. 015. 吳楠, 王旭東, 胡晴晴, 等. 基于多LED的高精度室內(nèi)可見(jiàn)光定位方法[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 727-732. doi: 1011999/JEIT140725. WU Nan, WANG Xudong, HU Qingqing, et al. Multiple LED based high accuracy indoor visible light positioning scheme[J]. Journal of Electronics Information Technology, 2015, 37(3): 727-732. doi: 1011999/JEIT140725. 谷陽(yáng), 宋千, 李楊寰, 等. 基于慣性鞋載傳感器的人員自主定位粒子濾波方法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 484-488. doi: 10.11999/JEIT140362. GU Yang, SONG Qian, LI Yanghuan, et al. A particle filter method for pedestrian navigation using foot-mounted inertial sensors[J]. Journal of Electronics Information Technology, 2015, 37(2): 484-488. doi: 10.11999/JEIT140362. 何堅(jiān), 萬(wàn)志江, 劉金偉. 基于電源線(xiàn)和位置指紋的室內(nèi)定位技術(shù)[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2902-2908. doi: 10.3724 /SP.J.1146.2013.02022 HE Jian, WAN Zhijiang, and LIU Jinwei. Indoor positioning technology based on powerline and location fingerprint[J]. Journal of Electronics Information Technology, 2014, 36(12): 2902-2908. doi: 10.3724/SP.J.1146.2013.02022. 劉志剛, 汪晉寬. 多傳感器交互濾波算法[J]. 電子學(xué)報(bào), 2012, 40(4): 724-728 doi: 10. 3969/j.issn.0372-2112.2012.04.016. LIU Zhigang and WANG Jinkuan. Interacting multiple sensor filter for sensor networks[J]. Acta Electronica Sinica, 2012, 40(4): 724-728. doi: 10. 3969/j.issn.0372-2112.2012.04. 016. LIU Zhigang, WANG Jinkuan, and XUE Yanbo. Interacting multiple sensor filter[J]. Signal Processing, 2012, 92(9): 2180-2186. BAR-SHALOM Y and LI X R. Multitarget-Multisensor Tracking: Principles and Techniques[M]. Los Angeles, CA, US, Artech House, Inc., 1995:187-277. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1365
- HTML全文瀏覽量: 133
- PDF下載量: 651
- 被引次數(shù): 0