一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于鄰域結(jié)構(gòu)和高斯混合模型的非剛性點(diǎn)集配準(zhǔn)算法

彭磊 李光耀 肖莽 王剛 謝力

彭磊, 李光耀, 肖莽, 王剛, 謝力. 基于鄰域結(jié)構(gòu)和高斯混合模型的非剛性點(diǎn)集配準(zhǔn)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
引用本文: 彭磊, 李光耀, 肖莽, 王剛, 謝力. 基于鄰域結(jié)構(gòu)和高斯混合模型的非剛性點(diǎn)集配準(zhǔn)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
PENG Lei, LI Guangyao, XIAO Mang, WANG Gang, XIE Li. Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models[J]. Journal of Electronics & Information Technology, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
Citation: PENG Lei, LI Guangyao, XIAO Mang, WANG Gang, XIE Li. Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models[J]. Journal of Electronics & Information Technology, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501

基于鄰域結(jié)構(gòu)和高斯混合模型的非剛性點(diǎn)集配準(zhǔn)算法

doi: 10.11999/JEIT150501
基金項(xiàng)目: 

山東省自然科學(xué)基金(ZR2015FL005),泰安市科技發(fā)展計(jì)劃(2015GX2016)

Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models

Funds: 

Shandong Provincial Natural Science Foundation, China (ZR2015FL005), Taian Science and Technology Development Program, China (2015GX2016)

  • 摘要: 非剛性點(diǎn)集配準(zhǔn)算法在實(shí)際應(yīng)用中要求對噪聲、遮擋或異常點(diǎn)具有很好的魯棒性。該文采用高斯混合模型并結(jié)合點(diǎn)的鄰域結(jié)構(gòu)信息實(shí)現(xiàn)非剛性點(diǎn)集配準(zhǔn)。使用高斯混合模型表示模型點(diǎn)集,通過高斯徑向基函數(shù)構(gòu)建變換模型。并根據(jù)點(diǎn)的鄰域結(jié)構(gòu)信息決定高斯混合模型中每個(gè)高斯組成部分所占的比例。在EM算法的期望步(E-step)階段求解點(diǎn)的對應(yīng)關(guān)系,在最大化步(M-step)階段求解異常點(diǎn)比例系數(shù)和變換的閉合形式解,直至算法收斂得到最優(yōu)解。通過在合成數(shù)據(jù)和實(shí)際的視網(wǎng)膜圖像上的實(shí)驗(yàn),與目前幾種先進(jìn)的點(diǎn)集配準(zhǔn)方法進(jìn)行了比較,證明該算法具有較好的配準(zhǔn)效果和魯棒性。
  • BESL P J and MCKAY N D. Method for registration of 3-D shapes[C]. Robotics-DL tentative. International Society for Optics and Photonics, Boston, 1992: 586-606.
    CHUI H and RANGARAJAN A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141.
    BELONGIE S, MALIK J, and PUZICHA J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
    MA J, ZHAO J, TIAN J, et al. Robust estimation of nonrigid transformation for point set registration[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2147-2154.
    CHEN J, MA J, YANG C, et al. Non-rigid point set registration via coherent spatial mapping[J]. Signal Processing, 2015, 106: 62-72.
    ZHENG Y and DOERMANN D. Robust point matching for nonrigid shapes by preserving local neighborhood structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 643-649.
    GE S, FAN G, and DING M. Non-rigid point set registration with global-local topology preservation[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Columbus, 2014: 245-251.
    TANG J, SHAO L, and ZHEN X. Robust point pattern matching based on spectral context[J]. Pattern Recognition, 2014, 47(3): 1469-1484.
    LEE J H and WON C H. Topology preserving relaxation labeling for nonrigid point matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 427-432.
    YAN X, WANG W, ZHAO J, et al. Relaxation labeling for non-rigid point matching under neighbor preserving[J]. Journal of Central South University, 2013, 20: 3077-3084.
    ZHAO H, JIANG B, TANG J, et al. Image matching using a local distribution based outlier detection technique[J]. Neurocomputing, 2015, 148: 611-618.
    秦紅星, 徐雷. 基于信息論的 KL-Reg 點(diǎn)云配準(zhǔn)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1520-1524. doi: 10.11999/ JEIT141248.
    QIN Hongxing and XU Lei. Information theory based KL-Reg point cloud registration[J]. Journal of Electronics Information Technology, 2015, 37(6): 1520-1524. doi: 10. 11999/JEIT141248.
    TAO W and SUN K. Asymmetrical gauss mixture models for point sets matching[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014: 1598-1605.
    ZHOU Z, ZHENG J, DAI Y, et al. Robust non-rigid point set registration using studentst mixture model[J]. PlosOne, 2014, 9(3): e91381.
    JIAN B and VEMURI B C. Robust point set registration using gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.
    MYRONENKO A and SONG X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.
    ZHAO J, MA J, TIAN J, et al. A robust method for vector field learning with application to mismatch removing[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 2011: 2977-2984.
    趙燁, 蔣建國, 洪日昌. 基于空間約束的快速魯棒特征匹配優(yōu)化[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2571-2577. doi: 10.3724/ SP.J.1146.2013.01960.
    ZHAO Ye, JIANG Jianguo, and HONG Richang. A speeded up robust feature matching optimization based on apatial constraint[J]. Journal of Electronics Information Technology, 2014, 36(11): 2571-2577. doi: 10.3724/ SP.J. 1146.2013.01960.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1891
  • HTML全文瀏覽量:  267
  • PDF下載量:  748
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-04-30
  • 修回日期:  2015-10-08
  • 刊出日期:  2016-01-19

目錄

    /

    返回文章
    返回