一種基于反饋機制的閉環(huán)圖像去霧算法
doi: 10.11999/JEIT150494
-
1.
(空軍工程大學(xué)航空航天工程學(xué)院 西安 710038) ②(光電信息控制和安全技術(shù)重點實驗室 三河 065201)
國家自然科學(xué)基金(61372167, 61379104)
An Adaptive Closed-loop Image Dehazing Algorithm Based on the Feedback Mechanism
-
1.
(Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China)
-
2.
(Optical Information Control and Security Technology Laboratory, Sanhe 065201, China)
The National Natural Science Foundation of China (61372167, 61379104)
-
摘要: 針對目前去霧算法易受大氣環(huán)境隨機性和復(fù)雜性影響而造成自適應(yīng)性不強的問題,該文提出一種具有反饋機制的自適應(yīng)閉環(huán)去霧算法。該算法首先通過基于人眼視覺的特征認知評價進行參數(shù)初始化;然后利用去霧強度評價結(jié)果對反饋校正局部對比度參數(shù)進行調(diào)節(jié),從而對去除加性光照后的圖像進行自適應(yīng)局部對比度提升;最后借鑒去霧后圖像的自然度設(shè)定迭代終止條件,決定是否輸出去霧結(jié)果。實驗表明該算法能夠自適應(yīng)提升不同退化類型、不同退化程度下的霧天圖像對比度,且去霧結(jié)果的信息熵和清晰度質(zhì)量評價指標優(yōu)于已有算法。Abstract: To solve the problem of low adaptability in existing dehazing algorithms caused by the randomness and complexity of atmospheric environment, an adaptive closed-loop dehazing algorithm based on the feedback mechanism is proposed. Firstly, parameters in the proposed algorithm are initialized according to human visual system based characteristic cognitive assessment. Secondly, the estimation of dehazing strength is given as the feedback to correct parameters of local contrast adjustment method, and then adaptively improve the local contrast of image after removing additive light. Finally, the terminating condition is set according to the naturalness of image after dehazing to determine whether to output the result. Experimental results show that the proposed algorithm can adaptively improve the contrast of hazy images with a variety of degradation types and degrees, and the evaluation of information entropy and definition of dehazing results is better than those of other existing algorithms.
-
Key words:
- Image dehaze /
- Visual mechanism /
- Feedback mechanism
-
KRISTOFOR B G and TRUONG Q N. An analysis and method for contrast enhancement turbulence mitigation[J]. IEEE Transactions on Image Processing, 2014, 23(7): 3179-3190. WANG Y K and FAN C . Single image defogging by multiscale depth fusion[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4826-4837. SUN X M, SUN J X, ZHAO L R, et al. Improved single image haze removal using dark channel prior[J]. Journal of Image and Graphics, 2014, 19(3): 381-385. SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Polarization-based vision through haze[J]. Appled Optics, 2003, 42(3): 511-525. NARASIMHAN S G and NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. DING M and TONG R F. Efficient dark channel based image dehazing using quadtrees[J]. SCIENCE CHINA Information Sciences, 2013, 56(9): 231-239. XIONG Y Q, YAN H, and YU C. Improved haze removal algorithm using dark channel prior[J]. Journal of Computational Information Systems, 2013, 9(14): 5743-5750. 龐春穎, 嵇曉強, 孫麗娜, 等. 一種改進的圖像快速去霧新算法[J]. 光子學(xué)報, 2013, 42(7): 872-877. PANG Chunying, JI Xiaoqiang, SUN Lina, et al. An improved method of image fast defogging[J]. Acta Photonica Sinica, 2013, 42(7): 872-877. GIBSON K B, VO D T, and NGUYEN T Q. An investigation of dehazing effects on image and video coding[J]. IEEE Transactions on Image Processing, 2012, 21(2): 662-673. KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing[J]. Journal of Visual Communication and Image Representation, 2013, 24(3): 410-425. SHIAU Y H, YANG H Y, CHEN P Y, et al. Hardware implementation of a fast and efficient haze removal method [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(8): 1369-1374. HE K M, SUN J, and TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. BOSSU J, HAUTIERE N, and TAREL J P. Rain or snow detection in image sequences through use of a histogram of orientation of streaks[J]. International Journal of Computer Vision, 2011, 93(3): 348-367. NISHINO K, KRATZ L, and LOMBARDI S. Bayesian defogging[J]. International Journal of Computer Vision, 2012, 98(4): 263-278. 方雯, 劉秉瀚. 反饋調(diào)節(jié)機制的暗通道去霧算法[J]. 計算機應(yīng)用, 2013, 33(7): 1998-2001. FANG Wen and LIU Binghan. Dehazing algorithm based on dark channel with feedback regulation mechanism[J]. Journal of Computer Applications, 2013, 33(7): 1998-2001. WALTHER D and KOCH C. Modeling attention to salient proto-objects[J]. Neural Networks, 2006, 19(9): 1395-1407. 王守覺, 丁興號, 廖英豪, 等. 一種新的仿生彩色圖像增強算法[J]. 電子學(xué)報, 2008, 36(10): 1970-1973. WANG Shoujue, DING Xinghao, LIAO Yinghao, et al. A novel bio-inspired algorithm for color image enhancement[J]. Acta Electronica Sinica, 2008, 36(10): 1970-1973. PARIS S and DURAND F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision, 2009, 81(1): 24-52. YANG Q X, TAN K H, and AHUJA N. Real-time O(1) bilateral filtering[C]. Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 557-564. KIMMEL R, ELAD M, SHAKED D, et al. A variational framework for Retinex[J]. Computer Vision, 2003, 52(1): 7-23. HE K M, SUN J, and TANG X O. Single image haze removal using dark channel prior[C]. Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1956-1963. 陳季夢, 陳佳俊, 劉杰, 等. 基于結(jié)構(gòu)相似度的大規(guī)模社交網(wǎng)絡(luò)聚類算法[J]. 電子與信息學(xué)報, 2015, 37(2): 449-454. doi: 10.11999/JEIT140512. CHEN Jimeng, CHEN Jiajun, LIU Jie, et al. Clustering algorithm for large-scale social networks based on structural similarity[J]. Journal of Electronics Information Technology, 2015, 37(2): 449-454. doi: 10.11999/JEIT140512. 薛模根, 朱虹, 袁廣林. 基于在線判別式字典學(xué)習(xí)的魯棒視覺跟蹤[J]. 電子與信息學(xué)報, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325. XUE Mogen, ZHU Hong, and YUAN Guanglin. Robust visual tracking based on online discrimination dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325. -
計量
- 文章訪問數(shù): 1719
- HTML全文瀏覽量: 136
- PDF下載量: 315
- 被引次數(shù): 0