一種多波段紅外圖像聯(lián)合配準(zhǔn)和融合方法
doi: 10.11999/JEIT150479
基金項(xiàng)目:
國家自然科學(xué)基金(61101195),江蘇省自然科學(xué)基金(SBK201343283)
Joint Image Registration and Fusion for Multispectral Infrared Images
Funds:
The National Natural Science Foundation of China (61101195), Natural Science Foundation of Jiangsu Province (SBK201343283)
-
摘要: 多波段紅外圖像配準(zhǔn)和融合是得到更高質(zhì)量夜視圖像的關(guān)鍵步驟。過去,這兩種方法被定義為兩個(gè)獨(dú)立的圖像處理過程。因此,在融合過程中忽略配準(zhǔn)誤差會(huì)嚴(yán)重影響最后的融合質(zhì)量。為解決上述問題,該文提出一種新的迭代優(yōu)化方法,該方法通過尋找最優(yōu)配準(zhǔn)參數(shù)來獲得最佳的融合性能,采用基于人眼感興趣區(qū)域的清晰度指標(biāo)作為融合質(zhì)量評(píng)價(jià)函數(shù)來完善配準(zhǔn)過程,采用模擬退火法解決聯(lián)合優(yōu)化問題。實(shí)驗(yàn)結(jié)果表明,針對(duì)夜視領(lǐng)域的多波段紅外圖像,該方法在配準(zhǔn)精度、融合質(zhì)量以及穩(wěn)定性上明顯優(yōu)于常用的配準(zhǔn)和融合算法。
-
關(guān)鍵詞:
- 圖像融合 /
- 圖像配準(zhǔn) /
- 多波段紅外圖像 /
- 清晰度指標(biāo)
Abstract: The registration and fusion are the two essential steps to get a composed image from the multispectral infrared images in the night vision. However, at present these two processes are considered as two independent steps, where the registration error may significantly affect the fusion quality. In this paper, a novel iteration optimization method is proposed to obtain the optimal registration parameter for the following fusion process. Definition index of the region of interest in the fused image is used to improve the register process, and simulated annealing method is used to solve the joint optimization problem. The experimental results show that the proposed method provides a robust stability and performance over several other state-of-the-art methods in the registration accuracy and fusion quality.-
Key words:
- Image fusion /
- Image registration /
- Multispectral infrared images /
- Definition index
-
鄧苗, 張基宏, 柳偉, 等. 基于全變分的權(quán)值優(yōu)化的多尺度變換圖像融合[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1657-1663. doi: 10.3724/SP.J.1146.2012.01183. DENG Miao, ZHANG Jihong, LIU Wei, et al. A total variation-based lowpass weight function optimization in multiscale image fusion[J]. Journal of Electronics Information Technology, 2013, 35(7): 1657-1663. doi: 10.3724/SP.J.1146.2012.01183. LIU Yan and YU Feihong. An automatic image fusion algorithm for unregistered multiply multi-focus images[J]. Optics Communications, 2015, 341: 101-113. 黃立勤, 陳財(cái)淦. 全景圖拼接中圖像融合算法的研究[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1292-1298. doi: 10.3724/ SP.J. 1146.2013.01220. HUANG Liqin and CHEN Caigan. Study on image fusion algorithm of panoramic image stitching[J]. Journal of Electronics Information Technology, 2014, 36(6): 1292- 1298. doi: 10.3724/ SP.J.1146.2013.01220. LEI Fei and WANG Wenxue. A fast method for image mosaic based on SURF[C]. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 2014: 79-82. 余先川, 呂中華, 胡丹. 遙感圖像配準(zhǔn)技術(shù)綜述[J]. 光學(xué)精密工程, 2013, 21(11): 2960-2972. YU Xianchuan, L? Zhonghua, and HU Dan. Review of remote sensing image registration technique[J]. Optics and Precision Engineering, 2013, 21(11): 2960-2972. BENTOUTOU Y, NASREDDING T, Kidiyo K, et al. An automatic image registration for applications in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2127-2137. MIAO Qiguang, SHI Cheng, XU Pengfei, et al. A novel algorithm of image fusion using shearlets[J]. Optics Communications, 2011, 284(6): 1540-1547. LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guide filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. SHI Cheng, MIAO Qiguang, and XU Pengfei. A novel algorithm of image fusion based on shearlets and PCNN[J]. Neurocomputing, 2013, 117: 47-53. KONG Weiwei and LIU Jianpeng. Technique for image fusion based on nonsubsampled shearlet transform and improved pulse coupled neural network[J]. Optical Engineering, 2013, 52(1): 017001. 沈滿德. 高分辨率中紅外溫度自適應(yīng)夜視成像系統(tǒng)[J]. 強(qiáng)激光與粒子束, 2013, 25(5): 1144-1146. SHEN Mande. High-resolution midwave infrared temperature-adaptive night-vision imaging system[J]. High Power Laser and Particle Beams, 2013, 25(5): 1144-1146. 柏連發(fā), 韓靜, 張毅, 等. 采用改進(jìn)梯度互信息和粒子群優(yōu)化算法的紅外與可見光圖像配準(zhǔn)算法[J]. 紅外與激光工程, 2012, 41(1): 248-254. BAI Lianfa, HAN Jing, ZHANG Yi, et al. Registration algorithm of infrared and visible images based on improved gradient normalized mutual information and particle swarm optimization[J]. Infrared and Laser Engineering, 2012, 41(1): 248-254. BILODEAU G A, TORABI A, and MORIN F. Visible and infrared image registration using trajectories and composite foreground images[J]. Image and Vision Computing, 2011, 29(1): 41-50. CHEN S, GUO Q, LEUNG H, et al. A maximum likelihood approach to joint image registration and fusion[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1363-1372. ZHANG Qian, CAO Zhiguo, HU Zhongwen, et al. Joint image registration and fusion for panchromatic and multispectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 467-471. WALD L. Quality of high resolution synthesized images: Is there a simple criterion?[C]. Proceedings of International Conference on Fusion of Earth Data, Nice, France, 2000: 99-105. KIM Y S, LEE J H, and RA J B. Multi-sensor image registration based on intensity and edge orientation information[J]. Pattern Recognition, 2008, 41(11): 3356-3365. 高紹姝, 金偉其, 王霞, 等. 可見光與紅外彩色融合圖像感知清晰度評(píng)價(jià)模型[J]. 光譜學(xué)與光譜分析, 2012, 32(12): 3197-3202. GAO Shaoshu, JIN Weiqi, WANG Xia, et al. The Evaluation model of perceived definition based on visible light and infrared color fusion image[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3197-3202. PELI E. Contrast in complex images[J]. Journal of the Optical Society of America A, 1990, 7(10): 2032-2040. KRKPATRIEK S, GELATT C D, and VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220: 671-680. BURT P J and ADELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. TOET A. Natural color mapping for multiband night vision imagery[J]. Information Fusion, 2003, 4(1): 155-166. STUDHOLME C, HILL D L G, and HAWKES D J. An overlap in variant entropy measure of 3D medical image alignment[J]. Pattern Recognition, 1999, 32(1): 71-86. BROWN L. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325-376. XYDEAS C S and PETROVIC V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 305-309. TRELEA I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325. -
計(jì)量
- 文章訪問數(shù): 1930
- HTML全文瀏覽量: 181
- PDF下載量: 699
- 被引次數(shù): 0