一種基于移動趨勢量化的多屬性垂直切換判決算法
doi: 10.11999/JEIT150443
-
2.
(南京郵電大學(xué)寬帶無線通信與傳感網(wǎng)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 南京 210003) ②(東南大學(xué)移動通信國家重點(diǎn)實(shí)驗(yàn)室 南京 210096)
國家自然科學(xué)基金(61271235),東南大學(xué)國家移動通信重點(diǎn)實(shí)驗(yàn)室開放基金(2011D07),江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目信息與通信工程
A Multi-attribute Vertical Handoff Decision Algorithm Based on Motion Trend Quantification
-
2.
(Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
The National Natural Science Foundation of China (61271235), Open Research Found of the National Mobile Communications Research Laboratory, Southeast University (2011D07), Priority Academic Program Development of Jiangsu Higher Education Institutions--Information and Communication Engineering
-
摘要: 由于對終端移動趨勢的不明確,基站容易盲目發(fā)起切換,并導(dǎo)致較高的切換失敗率。該文在LTE-WiMAX網(wǎng)絡(luò)構(gòu)成的異構(gòu)無線網(wǎng)絡(luò)環(huán)境下對現(xiàn)有的垂直切換算法進(jìn)行了優(yōu)化。該優(yōu)化算法考慮了終端移動趨勢,利用趨勢量化參數(shù)來推斷終端最終的目標(biāo)區(qū)域,解決已有判決算法中存在的不必要切換過多的問題,提高切換成功率。在衰落信道下的計(jì)算機(jī)仿真結(jié)果表明,該優(yōu)化算法可以減小切換中的切換失敗率,從而提高網(wǎng)絡(luò)的切換性能。
-
關(guān)鍵詞:
- 異構(gòu)網(wǎng)絡(luò) /
- 垂直切換 /
- 多屬性判決 /
- 移動趨勢
Abstract: The base station will initiate handoff blindly and cause high failure rate of handoff if the knowledge of the terminal,s motion trend is absent. An optimized algorithm is proposed to optmize existing vertical handoff algorithm in the LTE-WiMAX heterogeneous wireless network system. The proposed algorithm uses the motion trend quantification to estimate goal cells and restrict unnecessary handoff so as to increase success rate of handoff. The computer simulation results in fading channel show that the optimized algorithm can reduce the failure rate of handoff during the handoff process and enhance the handoff performance of network.-
Key words:
- Heterogeneous network /
- Vertical handoff /
- Multi-attribute decision /
- Motion trend
-
AHMED A, BOULAHIA L M, and GAITI D. Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification[J]. IEEE Communications Surveys Tutorials, 2014, 16(2): 776-811. LIM J and HONG D. Mobility and handover management for heterogeneous networks in LTE-advanced[J]. Wireless Personal Communications, 2013, 72(4): 2901-2912. KIM Y, KO H, PACK S, et al. Mobility-aware call admission control algorithm with handoff queue in mobile hotspots[J]. IEEE Transactions on Vehicular Technology, 2013, 62(8): 3903-3912. WANG S, FAN C, HSU C H, et al. A vertical handoff method via self-selection decision tree for internet of vehicles[J]. IEEE Systems Journal, 2014. doi: 10.1109/JSYST.2014.2306210. 劉勝美, 孟慶民, 潘甦, 等. 異構(gòu)無線網(wǎng)絡(luò)中基于SINR和層次分析法的SAW垂直切換算法研究[J]. 電子與信息學(xué)報(bào), 2011, 33(1): 235-239. doi: 10.3724/SP.J.1146.2010.00154. LIU S M, MENG Q M, PAN S, et al. A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks[J]. Journal of Electronics Information Technology, 2011, 33(1): 235-239. doi: 10.3724/SP.J.1146.2010.00154. ANUPAMA K S S, GOWRI S S, RAO B P, et al. An intelligent vertical handoff decision algorithm for geterogeneous wireless networks[C]. ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol. I, Visakhapatnam, 2014: 331-339. YANG P, SUN Y, LIU C, et al. A novel fuzzy logic based vertical handoff decision algorithm for heterogeneous wireless networks[C]. 2013 16th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), Atlantic City, NJ, 2013: 1-5. BO S, LIN L, and FENG D. The multi-attribute vertical handoff algorithm based on node mobility[C]. 2014 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, 2014: 1146-1149. JOHNSON S B, NATH S, and VELMURUGAN T. An optimized algorithm for vertical handoff in heterogeneous wireless networks[C]. 2013 IEEE Conference on Information Communication Technologies (ICT), Jeju Island, 2013: 1206-1210. YANG T and RONG P. A fuzzy logic vertical handoff algorithm with motion trend decision[C]. 2011 6th IEEE International Forum on Strategic Technology (IFOST), Harbin, China, 2011, 2: 1280-1283. LI Bin and LIU Shengmei. Vertical handoff algorithm based on mobility prediction[J]. Communication and Network, 2013, 39(1): 93-95. GE Kun, JI Hong, and LI Xi. A speed sensitive vertical handoff algorithm based on fuzzy control[C]. 5th IEEE International Conference?on Wireless Communications, Networking and Mobile Computing, 2009. WiCom,09, Beijing, 2009: 1-4. 馬彬, 謝顯中, 廖曉峰. 車輛異構(gòu)網(wǎng)絡(luò)中預(yù)測垂直切換算法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 874-880. doi: 10.11999/ JEIT140845. MA B, XIE X Z, and LIAO X F. Prediction vertical handoff algorithm in vehicle heterogeneous network[J]. Journal of Electronics Information Technology, 2015, 37(4): 874-880. doi: 10.11999/JEIT140845. LEE S K, SRIRAM K, KIM K, et al. Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2009, 58(2): 865-881. OMHENI N, ZARAI F, OBAIDAT M S, et al. A novel vertical handoff decision making algorithm across Heterogeneous Wireless Networks[C]. 2014 IEEE International Conference on Computer, Information and Telecommunication Systems (CITS), 2014: 1-6. DENG S, YI X, DENG M, et al. Reduced-guard-interval OFDM using digital sub-band-demultiplexing[J]. IEEE Photonics Technology Letters, 2013, 25(22): 2174-2177. GAO X, WANG X, ZOU Y, et al. An efficient OFDM with adaptive guard interval for amplify and forward relay systems[C]. 2013 IEEE Vehicular Technology Conference (VTC Fall), 7. Las Vegas, NV, 2013: 1-5. 楊贊, 趙輝, 趙玉萍. 基于循環(huán)平穩(wěn)性的異構(gòu)網(wǎng)OFDM系統(tǒng)窄帶干擾消除[J]. 電子與信息學(xué)報(bào), 2012, 34(9): 2208-2212. doi: 10.3724/SP.J.1146.2012.00144. YANG Z, ZHAO H, and ZHAO Y P. Cyclostationarity-based narrowband interference suppression for OFDM systems in heterogeneous networks[J]. Journal of Electronics Information Technology, 2012, 34(9): 2208-2212. doi: 10.3724/SP.J.1146.2012.00144. HAMAYDEH N, KHALIL A, BALI S, et al. The impact of mobile speed on vertical handover process between WiFi and WiMAX networks[C]. 2013 IEEE International RF and Microwave Conference (RFM), Penang, 2013: 138-143. MENG J and CHEN J. Doppler spread estimation for mobile OFDM systems[J]. Electronic Science and Technology, 2011, 24(6): 1-3. SINGHAPAN A, NAITO K, MORI K, et al. Doppler frequency spread estimation for OFDM systems in time-varying fading channel[C]. 2012 9th IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI- CON), Phetchaburi, 2012: 1-4. NISHAD P K and SINGH P. Carrier frequency offset estimation in OFDM systems[C]. 2013 IEEE Conference on Information Communication Technologies (ICT), Jeju Island, 2013: 885-889. LIN J, YE F, and REN J. Joint estimation for carrier frequency offset and sampling frequency offset in OFDM systems[C]. 2014 12th IEEE International Conference on Solid-state and Integrated Circuit Technology (ICSICT), Guilin, 2014: 1-3. GE X, TU S, HAN T, et al. Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models[J]. Networks, 2014, 4(2): 158-167. BIOMO J D M M, KUNZ T, and St-Hilaire M. An enhanced Gauss-Markov mobility model for simulations of unmanned aerial ad hoc networks[C]. Wireless and Mobile Networking Conference (WMNC), Vilamoura, 2014: 1-8. -
計(jì)量
- 文章訪問數(shù): 1307
- HTML全文瀏覽量: 128
- PDF下載量: 345
- 被引次數(shù): 0