基于小波變換及Otsu分割的農(nóng)田作物行提取
doi: 10.11999/JEIT150421
-
1.
(浙江理工大學(xué)信息學(xué)院 杭州 310018) ②(浙江理工大學(xué)機械與自動控制學(xué)院 杭州 310018)
國家自然科學(xué)基金(61272311),浙江省自然科學(xué)基金重點項目(LZ15F020004),機械工程浙江省高校重中之重學(xué)科和浙江理工大學(xué)重點實驗室優(yōu)秀青年人才培養(yǎng)基金(ZSTUME01B17),計算機應(yīng)用創(chuàng)新重點學(xué)科研究生創(chuàng)新研究項目(XDY14003),浙江理工大學(xué)科研啟動基金(13032156-Y),浙江理工大學(xué)521資助計劃項目
Crop Row Detection Based on Wavelet Transformation and Otsu Segmentation Algorithm
-
1.
(Department of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China)
-
2.
(Department of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China)
The National Natural Science Foundation of China (61272311), Zhejiang Provincial Natural Science Foundation (LZ15F020004), The Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory (ZSTUME 01B17), Graduate Student Innovation Research Project of Computer Application Innovation Key Subject (XDY14003), Science Foundation of Zhejiang Sci-Tech University (ZSTU) (13032156-Y), 521 Project of Zhejiang Sci-Tech University
-
摘要: 基于機器視覺的田間車輛自動導(dǎo)航是農(nóng)用車輛導(dǎo)航的熱門研究方向,但含較密集雜草的農(nóng)田作物行提取,目前依然是個難題。該文提出一種適用于密集雜草農(nóng)田的,主要基于頻率和顏色信息的農(nóng)田圖像分割算法。通過小波多分辨率分解后構(gòu)建的頻率總量指標,利用作物產(chǎn)生主頻信息的總量優(yōu)勢,結(jié)合作物行的交替及最大類間方差法、顏色模型分量變換,實現(xiàn)農(nóng)田雜草的去除,并通過最小二乘法擬合直線,實現(xiàn)農(nóng)田作物行提取。實驗表明算法能有效克服密集雜草干擾,針對 像素大小圖像,單幅處理時間平均為132 ms。Abstract: Vision-based agricultural vehicle navigation has become a popular research area of automated guidance, however, crop row detection in high weeds field is still a challenging topic. An image segmentation method mainly based on frequency and color information is proposed to remove weeds. The algorithm is based on total frequency parameters, more total crop frequency, alternation regular of crop rows, Otsu method and color model transformation. The total frequency parameters are obtained from wavelet multi-resolution decomposition. The least square method is used in fitting straight line to detect the crop rows. Experiments show that the algorithm can effectively overcome the high weeds. The average processing time of a single pixels image is 132 ms.
-
Key words:
- Agriculture navigation /
- Crop rows /
- Wavelet transformation /
- Otsu
-
張柏華, 馬紅光, 孫新利, 等. 基于正交約束的導(dǎo)航接收機空時自適應(yīng)方法[J]. 電子與信息學(xué)報, 2015, 37(4): 900-906. doi: 10.1199/JEIT140740. ZHANG Baihua, MA Hongguang, SUN Xinli, et al. Space time adaptive processing technique based on orthogonal constraint in navigation receiver[J]. Journal of Electronics Information Technology, 2015, 37(4): 900-906. doi: 10.1199/ JEIT140740. 姬長英, 周俊. 農(nóng)業(yè)機械導(dǎo)航技術(shù)發(fā)展分析[J]. 農(nóng)業(yè)機械學(xué)報, 2014, 45(9): 44-54. JI Changying and ZHOU Jun. Technical analysis of the development of agricultural machinery navigation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(9): 44-54. 李駿揚, 金立左, 費樹岷, 等. 基于多尺度特征表示的城市道路檢測[J]. 電子與信息學(xué)報, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271. LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271. 李盛輝, 田光兆, 姬長英, 等. 自主導(dǎo)航農(nóng)業(yè)車輛的全景視覺多運動目標識別跟蹤[J]. 農(nóng)業(yè)機械學(xué)報, 2015, 46(1): 1-7. LU Shenhui, TIAN Guangzhao, JI Changying, et al. Multiple moving objects tracking based on panoramic vision for autonomous navigation of agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(1): 1-7. KISE M, ZHANG Q, and ROVIRA M F. A stereovision-based crop row detection method for tractor-automated guidance[J]. Biosystems Engineering, 2005, 90(4): 357-367. ASTRAND B and BAERVELDT A J. A vision based row-following system for agricultural field machinery[J]. Mechatronics, 2005, 15(2): 251-269. Leemans V and Destain M F. A computer -vision based precision seed drill guidance assistance[J]. Computers and Electronics in Agriculture, 2007, 59(1-2): 1-12. BAKKER T, WOUTERS H, ASSELT K V, et al. A vision based row detection system for sugar beet[J]. Computers and Electronics in Agriculture, 2008, 60(1): 87-95. 張志斌, 羅錫文, 周學(xué)成, 等. 基于Hough變換和Fisher準則的壟線識別算法[J]. 中國圖象圖形學(xué)報, 2007, 12(12): 2164-2168. ZHANG Zhibin, LUO Xiwen, ZHOU Xuecheng, et al. Crop rows detection based on Hough transform and fisher discriminant criterion function[J]. Journal of Image and Graphics, 2007, 12(12): 2164-2168. JI Ronghua and QI Lijun. A crop-row detection algorithm based on random hough transformation[J]. Mathematical and Computer Modelling, 2011, 54(3/4): 1016-1020. GUERRERO J M, GUIJARRO M, MONTALVO M, et al. Automatic expert system based on images for accuracy crop row detection in maize fields[J]. Expert Systems with Applications, 2013, 40(2): 656-664. 姜國權(quán), 王志衡, 趙翠君. 基于已知點的作物行檢測方法[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報, 2013, 21(5): 983-990. JIANG Guoquan, WANG Zhiheng, and ZHAO Cuijun. An algorithm of detecting crop rows based on known-points[J]. Journal of Basic Science and Engineering, 2013, 21(5): 983-990. 胡煉, 羅錫文, 張智剛, 等. 株間除草裝置橫向偏移量識別與作物行跟蹤控制[J]. 農(nóng)業(yè)工程學(xué)報, 2013, 29(14): 8-14. HU Lian, LUO Xiwen, ZHANG Zhigang, et al. Side-shift offset identification and control of crop row tracking for intra-row mechanical weeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 8-14. MONTALVO M, PAJARES G, GUERRERO M, et al. Automatic detection of crop rows in maize fields with high weeds pressure[J]. Expert Systems with Applications, 2012, 39(15): 11889-11897. 韓永華, 汪亞明, 康鋒, 等. 基于小波多分辨率分解的農(nóng)田障礙物檢測[J]. 農(nóng)業(yè)機械學(xué)報, 2013, 44(6): 215-221. HAN Yonghua, WANG Yaming, KANG Feng, et al. Detection of obstacles in farmland based on wavelet multi- resolution transform[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(6): 215-221. JIANG G Q, WANG Z H, and LIU H M. Automatic detection of crop rows based on multi-ROIs[J]. Expert Systems with Applications, 2015, 42(5): 2429-2441. SYLVAIN J, GILLES R, XAVIER H, et al. In-field crop row phenotyping from 3D modeling performed using structure from motion[J]. Computers and Electronics in Agriculture, 2015, 110(1): 70-77. -
計量
- 文章訪問數(shù): 1742
- HTML全文瀏覽量: 247
- PDF下載量: 427
- 被引次數(shù): 0