一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

相似性約束的深度置信網(wǎng)絡(luò)在SAR圖像目標(biāo)識(shí)別的應(yīng)用

丁軍 劉宏偉 陳渤 馮博 王英華

丁軍, 劉宏偉, 陳渤, 馮博, 王英華. 相似性約束的深度置信網(wǎng)絡(luò)在SAR圖像目標(biāo)識(shí)別的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 97-103. doi: 10.11999/JEIT150366
引用本文: 丁軍, 劉宏偉, 陳渤, 馮博, 王英華. 相似性約束的深度置信網(wǎng)絡(luò)在SAR圖像目標(biāo)識(shí)別的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 97-103. doi: 10.11999/JEIT150366
DING Jun, LIU Hongwei, CHEN Bo, FENG Bo, WANG Yinghua. Similarity Constrained Deep Belief Networks with Application to SAR Image Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(1): 97-103. doi: 10.11999/JEIT150366
Citation: DING Jun, LIU Hongwei, CHEN Bo, FENG Bo, WANG Yinghua. Similarity Constrained Deep Belief Networks with Application to SAR Image Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(1): 97-103. doi: 10.11999/JEIT150366

相似性約束的深度置信網(wǎng)絡(luò)在SAR圖像目標(biāo)識(shí)別的應(yīng)用

doi: 10.11999/JEIT150366
基金項(xiàng)目: 

國家自然科學(xué)基金(61372132, 61201292),新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-13-0945),青年千人計(jì)劃

Similarity Constrained Deep Belief Networks with Application to SAR Image Target Recognition

Funds: 

The National Natural Science Foundation of China (61372132, 61201292), The Program for New Century Excellent Talents (NCET-13-0945), The Program for Young Thousand Talent by Chinese Central Government

  • 摘要: 特征提取是合成孔徑雷達(dá)(SAR)圖像目標(biāo)識(shí)別的關(guān)鍵環(huán)節(jié)。SAR圖像中存在的相干斑點(diǎn)和非光滑特性使得傳統(tǒng)針對(duì)光學(xué)圖像的特征提取方法變得很難應(yīng)用。雖然可以采用深度置信網(wǎng)絡(luò)(DBN)自動(dòng)地進(jìn)行特征學(xué)習(xí),但是該方法屬于無監(jiān)督學(xué)習(xí)方法,這使得學(xué)習(xí)到的特征與具體的任務(wù)是無關(guān)的。該文提出一種叫做相似性約束的受限玻爾茲曼機(jī)模型。該模型在學(xué)習(xí)過程中通過約束特征向量之間的相似性達(dá)到引入監(jiān)督信息的目的。另外,可以將多個(gè)相似性約束的受限玻爾茲曼機(jī)堆疊成一種新的深度模型,稱其為相似性約束的深度置信網(wǎng)絡(luò)模型。實(shí)驗(yàn)結(jié)果表明在SAR圖像目標(biāo)識(shí)別應(yīng)用中,該方法相比主成分分析(PCA)以及原始DBN具有更好的識(shí)別性能。
  • ZHAO Qun, PRINCIPE J C, et al. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643-655.
    SUN Yijun, LIU Zhipeng, TODOROVIC S, et al. Adaptive boosting for synthetic aperture radar automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 112-125.
    ZHOU Jianxiong, SHI Zhiguang, CHENG Xiao, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713-3729.
    PARK Jong-II, PARK Sang-hong, and KIM Kyung-tae. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476-480.
    ABDEL-RAHMAN M, GEORGE D, and GEOFFREY H. Acoustic modeling using deep belief networks [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22.
    NAVDEEP J and GEOFFREY H. Learning a better representation of speech soundwaves using restricted Boltzmann machines[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, 2011: 5884-5887.
    WU Yue, WANG Zuoguan, and JI Qiang. Facial feature tracking under varying facial expressions and face poses based on RBM[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, 2013: 3452-3459.
    HUGO L and YOSHUA B. Classification using discriminative restricted Boltzmann machines[C]. International Conference on Machine Learning, New York, NY, USA, 2008: 536-543.
    UMAMAHESH S, VISHAL M, and RAJ Raghu G. SAR automatic target recognition using discriminative graphical models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 591-606.
    LIU M, WU Y, ZHANG P, et al. SAR target configuration recognition using locality preserving property and Gaussian mixture distribution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 268-272.
    YOSHUA B, AARON C, and PASCAL V. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
    FISCHER A and IGEL C. Training restricted Boltzmann machines: An introduction[J]. Pattern Recognition, 2014, 47(1): 25-39.
    YOSHUA B, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]. Proceedings of Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2007: 153-160.
    GEOFFREY H. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
    HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1634
  • HTML全文瀏覽量:  157
  • PDF下載量:  740
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-03-26
  • 修回日期:  2015-09-16
  • 刊出日期:  2016-01-19

目錄

    /

    返回文章
    返回