一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于弱監(jiān)督E2LSH和顯著圖加權(quán)的目標(biāo)分類方法

趙永威 李弼程 柯圣財(cái)

趙永威, 李弼程, 柯圣財(cái). 基于弱監(jiān)督E2LSH和顯著圖加權(quán)的目標(biāo)分類方法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 38-46. doi: 10.11999/JEIT150337
引用本文: 趙永威, 李弼程, 柯圣財(cái). 基于弱監(jiān)督E2LSH和顯著圖加權(quán)的目標(biāo)分類方法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 38-46. doi: 10.11999/JEIT150337
ZHAO Yongwei, LI Bicheng, KE Shengcai. Object Classification Method Based on Weakly Supervised E2LSH and Saliency Map Weighting[J]. Journal of Electronics & Information Technology, 2016, 38(1): 38-46. doi: 10.11999/JEIT150337
Citation: ZHAO Yongwei, LI Bicheng, KE Shengcai. Object Classification Method Based on Weakly Supervised E2LSH and Saliency Map Weighting[J]. Journal of Electronics & Information Technology, 2016, 38(1): 38-46. doi: 10.11999/JEIT150337

基于弱監(jiān)督E2LSH和顯著圖加權(quán)的目標(biāo)分類方法

doi: 10.11999/JEIT150337
基金項(xiàng)目: 

國家自然科學(xué)基金(60872142, 61301232)

Object Classification Method Based on Weakly Supervised E2LSH and Saliency Map Weighting

Funds: 

The National Natural Science Foundation of China (60872142, 61301232)

  • 摘要: 在目標(biāo)分類領(lǐng)域,當(dāng)前主流的目標(biāo)分類方法是基于視覺詞典模型,而時(shí)間效率低、視覺單詞同義性和歧義性及單詞空間信息的缺失等問題嚴(yán)重制約了其分類性能。針對這些問題,該文提出一種基于弱監(jiān)督的精確位置敏感哈希(E2LSH)和顯著圖加權(quán)的目標(biāo)分類方法。首先,引入E2LSH算法對訓(xùn)練圖像集的特征點(diǎn)聚類生成一組視覺詞典,并提出一種弱監(jiān)督策略對E2LSH中哈希函數(shù)的選取進(jìn)行監(jiān)督,以降低其隨機(jī)性,提高視覺詞典的區(qū)分性。然后,利用GBVS(Graph-Based Visual Saliency)顯著度檢測算法對圖像進(jìn)行顯著度檢測,并依據(jù)單詞所處區(qū)域的顯著度值為其分配權(quán)重;最后,利用顯著圖加權(quán)的視覺語言模型完成目標(biāo)分類。在數(shù)據(jù)集Caltech-256和Pascal VOC 2007上的實(shí)驗(yàn)結(jié)果表明,所提方法能夠較好地提高詞典生成效率,提高目標(biāo)表達(dá)的分辨能力,其目標(biāo)分類性能優(yōu)于當(dāng)前主流方法。
  • SIVIC J and ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]. Proceedings of 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 1470-1477.
    CHEN Y Z, Dick A, LI X, et al. Spatially aware feature selection and weighting for object retrieval[J]. Image and Vision Computing, 2013, 31(6): 935-948.
    WANG J Y, Bensmail H, and GAO X. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification[J]. Pattern Recognition, 2013, 46(3): 3249-3255.
    OT?VIO A, PENATTI B, FERNANDA B S, et al. Visual word spatial arrangement for image retrieval and classification[J]. Pattern Recognition, 2014, 47(1): 705-720.
    宋相法, 焦李成. 基于稀疏編碼和集成學(xué)習(xí)的多示例多標(biāo)記圖像分類方法[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 622-626. doi: 10.3724/SP.J.1146.2012.01218.
    SONG Xiangfa and JIAO Licheng. A multi-instance multi-label image classification method based on sparse coding and ensemble learning[J]. Jounal of Electronics Information Technology, 2013, 35(3): 622-626. doi: 10.3724/ SP.J.1146.2012.01218.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    VAN GEMERT J C, VEENMAN C J, SMEULDERS A W M, et al. Visual word ambiguity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1271-1283.
    NISTER D and STEWENIUS H. Scalable recognition with a vocabulary tree[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2161-2168.
    PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
    MU Y D, SUN J, and YAN S C. Randomized locality sensitive vocabularies for bag-of-features model[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1-14.
    CAO Yiqun, JIANG Tao, and THOMAS G. Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing[J]. Bioinformatics, 2010, 26(7): 953-959.
    XIA Hao, WU Pengcheng, and STEVEN C H. Boosting multi-kernel locality-sensitive hashing for scalable image retrieval[C]. Proceedings of 35th ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, Oregon, USA, 2012: 55-64.
    張瑞杰, 郭志剛, 李弼程. 基于E2LSH-MKL的視覺語義概念檢測[J]. 自動(dòng)化學(xué)報(bào), 2012, 38(10): 1671-1678.
    ZHANG Ruijie, GUO Zhigang, and LI Bicheng. A visual semantic concept detection algorithm based on E2LSH- MKL[J]. Acta Automatica Sinica, 2012, 38(10): 1671-1678.
    ZHENG Q and GAO W. Constructing visual phrases for effective and efficient object-based image retrieval[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2008, 5(1): 1-19.
    CHEN T, YAP K H, and ZHANG D J. Discriminative soft bag-of-visual phrase for mobile landmark recognition[J]. IEEE Transactions on Multimedia, 2014, 16(3): 612-622.
    PHILBIN J, CHUM O, ISARD M, et al. Lost in quantization: improving particular object retrieval in large scale image databases[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2009: 278-286.
    WEINSHALL D, LEVI G, and HANUKAEV D. LDA topic model with soft assignment of descriptors to words[C]. Proceedings of the 30th International Conference on Machine Learning, Atlanta, USA, 2013: 711-719.
    LAZEBNIK S, SCHMID C, and PONCE J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169-2178.
    SHARMA G and JURIE F. Learning discriminative spatial representation for image classification[C]. Proceedings of the 22nd British Machine Vision Conference, Dundee, Britain, 2011: 1-11.
    趙春暉, 王瑩, KANEKO M. 一種基于詞典模型的圖像優(yōu)化分類方法[J]. 電子與信息學(xué)報(bào), 2012, 34(9): 2064-2070. doi: 10.3724/SP.J.1146.2012.00047.
    ZHAO Chunhui, WANG Ying, and KANEKO M. An optimized method for image classification based on bag of words model[J]. Journal of Electronics Information Technology, 2012, 34(9): 2064-2070. doi: 10.3724/ SP.J.1146.2012.00047.
    趙仲秋, 季海峰, 高雋, 等. 基于稀疏編碼多尺度空間潛在語義分析的圖像分類[J]. 計(jì)算機(jī)學(xué)報(bào), 2014, 37(6): 1251-1260.
    ZHAO Zhongqiu, JI Haifeng, GAO Jun, et al. Sparse coding based on multi-scale spatial latent semantic analysis for image classification[J]. Chinese Journal of Computers, 2014, 37(6): 1251-1260.
    XIE L, TIAN Q, and ZHANG B. Spatial pooling of heterogeneous features for image classification[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1994-2008.
    GENG B, YANG L, and XU C. A study of language model for image retrieval[C]. Proceedings of IEEE International Conference on Data Mining Workshops, Washington, DC, USA, 2009: 158-163.
    吳磊. 視覺語言分析: 從底層視覺特征表達(dá)到語義距離學(xué)習(xí)[D]. [博士論文], 中國科學(xué)技術(shù)大學(xué), 2010.
    WU Lei. Visual language analysis: from low level feature representation to semantic metric learning[D]. [Ph.D. dissertation], University of Science and Technology of China, 2010.
    DATAR M, IMMORLICA N, and INDYK P. Locality-sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the 20th Annual Symposium on Computational Geometry, New York, USA, 2004: 253-262.
    HAREL J, KOCH C, and PERONA P. Graph-based visual saliency [C]. Proceedings of Advances in Neural Information Processing Systems, NewYork, USA, 2007: 545-552.
    SLANEY M and CASEY M. Locality-sensitive hashing for finding nearest neighbors[J]. IEEE Signal Processing Magazine, 2008, 25(2): 128-131.
    高毫林, 彭天強(qiáng), 李弼程. 基于多表頻繁項(xiàng)投票和桶映射鏈的快速檢索方法[J]. 電子與信息學(xué)報(bào), 2012, 34(11): 2574-2581. doi: 10.3724/ SP.J.1146.2012.00548.
    GAO Haolin, PENG Tianqiang, and LI Bicheng. A fast retrieval method based on frequent items voting of multi table and bucket map chain[J]. Journal of Electronics Information Technology, 2012, 34(11): 2574-2581. doi: 10.3724/SP.J.1146.2012.00548.
    ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 1254-1259.
    LI F F, FERGUS R, and PERONA P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1199
  • HTML全文瀏覽量:  133
  • PDF下載量:  714
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-03-23
  • 修回日期:  2015-09-09
  • 刊出日期:  2016-01-19

目錄

    /

    返回文章
    返回