分布式損耗加載和導(dǎo)引中心調(diào)節(jié)對TE11模工作回旋行波管穩(wěn)定性影響的多模穩(wěn)態(tài)分析
doi: 10.11999/JEIT150192
-
2.
(中國科學(xué)院電子學(xué)研究所 北京 100190) ②(中國科學(xué)院大學(xué) 北京 100037)
Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube
-
2.
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
-
摘要: 該文利用多模穩(wěn)態(tài)非線性理論,研究損耗材料加載和導(dǎo)引中心半徑調(diào)節(jié)對回旋行波管穩(wěn)定性改善的效果。結(jié)果表明,隨著損耗材料電導(dǎo)率的減小返波振蕩強(qiáng)度逐漸減小直至完全消失,同時工作模式輸出功率顯著增大;適當(dāng)增大導(dǎo)引中心半徑后,完全抑制返波振蕩需要的損耗更小,可以減輕熱損耗散熱的困難,同時還能減小管子輸出性能對電導(dǎo)率變化的敏感性。
-
關(guān)鍵詞:
- 回旋行波管 /
- 多模穩(wěn)態(tài) /
- 分布式損耗 /
- 導(dǎo)引中心半徑 /
- 返波振蕩
Abstract: In this paper, the effect of distributed loss loading and guiding center radius modifying on the stability of a TE11 mode Gyro-Traveling Wave Tube (Gyro-TWT) is studied by multimode steady-state method. The result shows that the output power of the backward oscillation mode keeps weaken till zero as the conductance of the lossy material reduces, while the output power of the working mode grows significantly. As guiding center radius increases, loss loading needed to suppress oscillation completely is weaker, which makes heat easier to dissipate. Besides, the increment of guiding center radius also makes the output characteristic less sensitive to conductance variation. -
劉盛綱. 相對論電子學(xué)[M]. 北京: 科學(xué)出版社, 1987: 1-2. Lau Y Y, Chu K R, Barnett L R, et al.. Gyrotron traveling wave amplifier1: analysis of oscillations[J]. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-392. Barnett L R, Chang L H, Chen H Y, et al.. Absolute instability competition and suppression in a mllimeter-wave gyrotron traveling wave tube[J]. Physical Review Letters, 1989, 63(10): 1062-1065. 薛智浩, 劉濮鯤, 杜朝海, 等. W波段螺旋波紋波導(dǎo)回旋行波管注波互作用的非線性分析[J]. 物理學(xué)報, 2014, 63(8): 080201.1-080201.8. Xue Zhi-hao, Liu Pu-kun, Du Chao-hai, et al.. Research on non-linear beam-wave interaction of W-band Gyro-TWT with helical waveguide[J]. Acta Physica Sinica, 2014, 63(8): 080201.1-080201.8. Tang Y, Luo Y, Xu Y, et al.. Self-consistent nonlinear analysis and 3D particle-In-cell simulation of a W-band gyro-TWT[J]. Journal of Infrared Millmeter and Terahz Waves, 2014, 35(10): 799-812. Wang J X, Luo Y, Xu Y, et al.. Numerical design and optimization of a curved collector for a Q-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2014, 61(1): 147-150. Denisov G G, Samsonov S V, Mishakin S V, et al. Microwave system for feeding and extracting power to and from a gyro-TWT through one window[J]. IEEE Electron Devices Letters, 2014. 35(7): 789-791. Wang J X, Luo Y, Xu Y, et al. Simulation and experiment of a Ku-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2013, 61(6): 1818-1823. Alaria M K, Choyal Y, and Sinha A K. Design of a Ka-band gyro-TWT amplifier for broadband operation[J]. Physics of Plasmas, 2013, 20(7): 073110.1-073110.6. Yan R, Tang Y, Luo Y, et al.. Design and experimental study of a high-gain W-band gyro-TWT with nonuniform periodic dielectric loaded waveguide[J]. IEEE Transactions on Plasma Science, 2014, 61(7): 2564-2569. Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106. Chu K R, Chen H Y, Hung C L, et al.. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404. Wang Q S, McDermott D B, and Luhmann N C Jr. Operation of a stable 200-kw second-harmonic Gyro-TWT amplifier[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 700-706. Sirigiri J R, Shapiro M A, Temkin R J, et al.. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier[J]. Physical Review Letters, 2003, 90(25): 258302.1-258302.4. Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106. McDermott D B, Song H H, Hirata Y, et al. Design of a W-Band TE01 mode gyrotron traveling-wave amplifier with high power and broad-band capabilities[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 894-902. Song H H, McDermott D B, Hirata Y, et al.. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier[J]. Physics of Plasmas, 2004, 11(5): 2935-2941. 彭澍源, 王秋實, 張兆傳, 等. 回旋行波管多模穩(wěn)態(tài)理論及初步應(yīng)用[J]. 物理學(xué)報, 2014, 63(20): 208401.1-208401.9. Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, et al.. Multimode steady-state theory for Gyro-TWT and simulation of mode competition[J]. Acta Physica Sinica, 2014, 63(20): 208401.1-208401.9. 焦重慶. 回旋行波放大器的相關(guān)理論研究與數(shù)值模擬[D]. [博士論文], 中國科學(xué)院研究生院, 2007. Jiao Chong-qing. Theoretical study and numerical simulation of the gyrotron traveling wave amplifier[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2007. -
計量
- 文章訪問數(shù): 1577
- HTML全文瀏覽量: 161
- PDF下載量: 360
- 被引次數(shù): 0