一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于波形結(jié)構(gòu)特征和支持向量機(jī)的水面目標(biāo)識(shí)別

孟慶昕 楊士莪 于盛齊

孟慶昕, 楊士莪, 于盛齊. 基于波形結(jié)構(gòu)特征和支持向量機(jī)的水面目標(biāo)識(shí)別[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2117-2123. doi: 10.11999/JEIT150139
引用本文: 孟慶昕, 楊士莪, 于盛齊. 基于波形結(jié)構(gòu)特征和支持向量機(jī)的水面目標(biāo)識(shí)別[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2117-2123. doi: 10.11999/JEIT150139
Meng Qing-xin, Yang Shi-e, Yu Sheng-qi. Recognition of Marine Acoustic Target Signals Based on Wave Structure and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2117-2123. doi: 10.11999/JEIT150139
Citation: Meng Qing-xin, Yang Shi-e, Yu Sheng-qi. Recognition of Marine Acoustic Target Signals Based on Wave Structure and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2117-2123. doi: 10.11999/JEIT150139

基于波形結(jié)構(gòu)特征和支持向量機(jī)的水面目標(biāo)識(shí)別

doi: 10.11999/JEIT150139
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(11234002)資助課題

Recognition of Marine Acoustic Target Signals Based on Wave Structure and Support Vector Machine

  • 摘要: 借鑒語(yǔ)音聲學(xué)的研究成果,音色可作為區(qū)分不同目標(biāo)的依據(jù)。由于艦船輻射噪聲的音色信息包含在其信號(hào)的波形結(jié)構(gòu)特征中,可以通過(guò)提取艦船輻射噪聲的波形結(jié)構(gòu)特征判斷目標(biāo)類型。該文對(duì)水面目標(biāo)信號(hào)時(shí)域波形結(jié)構(gòu)特征提取進(jìn)行了研究,構(gòu)建了基于信號(hào)統(tǒng)計(jì)特性的特征矢量,包括過(guò)零點(diǎn)波長(zhǎng)、峰峰幅度、過(guò)零點(diǎn)波長(zhǎng)差分以及波列面積等。應(yīng)用支持向量機(jī)(Support Vector Machine, SVM)作為分類器識(shí)別兩類水面目標(biāo)信號(hào),核函數(shù)為徑向基函數(shù)(RBF)。提出了差分進(jìn)化和粒子群算法的混合算法,優(yōu)化了懲罰因子和徑向基函數(shù)參數(shù)的選取,兩類目標(biāo)的識(shí)別率較常規(guī)的網(wǎng)格搜索法有顯著提高。
  • 王志偉. 水下目標(biāo)被動(dòng)識(shí)別技術(shù)方法研究[D]. [碩士論文], 哈爾濱工程大學(xué), 2002.
    Wang Zhi-wei. The recognition study of passivity target[D]. [Master dissertation], Harbin Engineering University, 2002.
    蔡悅斌, 張明之, 史習(xí)智, 等. 艦船噪聲波形結(jié)構(gòu)特征提取及分類研究[J]. 電子學(xué)報(bào), 1999, 27(6): 129-130.
    Cai Yue-bin, Zhang Ming-zhi, Shi Xi-zhi, et al.. The feature extraction and classification of ocean acoustic signals based on wave structure[J]. Acta Electronica Sinica, 1999, 27(6): 129-130.
    廖明熙, 張小薊, 張歆. 基于稀疏表示的水聲信號(hào)分類識(shí)別[J]. 探測(cè)與控制學(xué)報(bào), 2014, 36(4): 67-70.
    Liao Ming-xi, Zhang Xiao-ji, and Zhang Xin. Classification and recognition of underwater acoustic signal based on sparse representation[J].Journal of Detection Control, 2014, 36(4): 67-70.
    許文海, 續(xù)元君, 董麗麗, 等. 基于水平集和支持向量機(jī)的圖像聲吶目標(biāo)識(shí)別[J]. 儀器儀表學(xué)報(bào), 2012, 33(1): 49-55.
    Xu Wen-hai, Xu Yuan-jun, Dong Li-li, et al.. Level-set and SVM based target recognition of image sonar[J].Chinese Journal of Scientific Instrument, 2012, 33(1): 49-55.
    史亞, 姬紅兵, 朱明哲, 等. 多核融合框架下的雷達(dá)輻射源個(gè)體識(shí)別[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2484-2490.
    Shi Ya, Ji Hong-bing, Zhu Ming-zhe, et al.. Specific radar emitter identification in multiple kernel fusion framework[J]. Journal of Electronics Information Technology, 2014, 36(10): 2484-2490.
    丁凱, 方向, 張衛(wèi)平, 等. 基于聲信號(hào)多重分形和支持向量機(jī)的目標(biāo)識(shí)別研究[J]. 兵工學(xué)報(bào), 2012, 33(12): 1521-1526.
    Ding Kai, Fang Xiang, Zhang Wei-ping, et al.. Target identification of acoustic signals based on multi-fractal analysis and support vector machine[J]. Acta Armamentarii, 2012, 33(12): 1521-1526.
    張啟忠, 席旭剛, 羅志增. 基于非線性特征的表面肌電信號(hào)模式識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2013, 35(9): 2054-2058.
    Zhang Qi-zhong, Xi Xu-gang, and Luo Zhi-zeng. A pattern recognition method for surface electromyography based on nonlinear features[J]. Journal of Electronics Information Technology, 2013, 35(9): 2054-2058.
    Chen Ping-wei, Wang Yung-ying, and Lee Ming-hahn. Model selection of SVMs using GA approach[C]. Proceedings of 2004 IEEE International Joint Conference on Neural Networks, Pscataway, NJ, 2004: 2035-2040.
    周紹磊, 廖劍, 史賢俊. RBF-SVM的核參數(shù)選擇方法及其在故障診斷中的應(yīng)用[J]. 電子測(cè)量與儀器學(xué)報(bào), 2014, 28(3): 240-246.
    Zhou Shao-lei, Liao Jian, and Shi Xian-jun. Kernel parameter selection of RBM-SVM and its application in fault diagnosis [J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(3): 240-246.
    鄭適, 張安學(xué), 岳思橙, 等. 基于改進(jìn)粒子群優(yōu)化的探地雷達(dá)波形反演算法[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2717-2722.
    Zheng Shi, Zhang An-xue, Yue Si-cheng, et al.. Ground penetrating radar inversion algorithm based on improved particle swarm optimization[J]. Journal of Electronics Information Technology, 2014, 36(11): 2717-2722.
    Fernandez P J A, Baeten V, Renier A M, et al.. Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds[J]. Journal of Chemometrics, 2004(18): 341-349.
    Cristianini N and Taylor J S. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M]. Cambridge: The Press Syndicate of the University of Cambridge, 2001: 93-94.
    廖曉晰. 動(dòng)力系統(tǒng)的穩(wěn)定性理論和應(yīng)用[M]. 北京:國(guó)防工業(yè)出版社, 2000: 169-199.
    Liao Xiao-xi. Stability Theory and Application of Power System[M]. Beijing: National Defence Industry Press, 2000: 169-199.
    楊坤德. 水聲陣列信號(hào)的匹配場(chǎng)處理[M]. 西安: 西北工業(yè)大學(xué)出版社, 2008: 32-39.
    Yang Kun-de. Matched Field Processing of Underwater Acoustic Array Signals[M]. Xian: Press of Northwestern Polytechnical University, 2008: 32-39.
    紀(jì)震,廖惠連,吳青華. 粒子群算法及應(yīng)用[M]. 北京: 科學(xué)出版社,2009: 169-199.
    Ji Zhen, Liao Hui-lian, and Wu Qing-hua. Application of Particle Swarm Algorithm[M]. Beijing: Science Press, 2009: 169-199.
    Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]. Proceedings of the Congress of Evolutionary Computation. Washington, USA, 1999: 1951-1957.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1651
  • HTML全文瀏覽量:  215
  • PDF下載量:  579
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-04-20
  • 刊出日期:  2015-09-19

目錄

    /

    返回文章
    返回