引腳約束的數(shù)字微流控生物芯片在線并行測試
doi: 10.11999/JEIT150095
基金項目:
廣西自然科學(xué)基金(2014GXNSFAA118398)和廣西研究生教育創(chuàng)新計劃(GDYCSZ201430)
Online Parallel Testing of Pin-constrained Digital Microfluidic Biochips
-
摘要: 隨著數(shù)字微流控生物芯片在生化領(lǐng)域中的廣泛應(yīng)用,對芯片可靠性和制造成本的要求也越來越高,在線測試對于確保微流控生物芯片正常工作異常重要。該文針對引腳約束的數(shù)字微流控生物芯片,提出一種基于改進最大最小蟻群算法的在線并行測試方案,在滿足各種約束條件的情況下,采用偽隨機比例原則,建立禁忌判斷策略,自適應(yīng)地改變信息素的殘留系數(shù),實現(xiàn)引腳約束數(shù)字微流控生物芯片的在線并行測試。實驗結(jié)果表明,該方法可以同時用于離線和在線測試,相對于單液滴離線和在線測試,可有效減少芯片的測試時間,提高了測試工作效率。
-
關(guān)鍵詞:
- 數(shù)字微流控芯片 /
- 并行測試 /
- 引腳約束 /
- 最大最小蟻群算法
Abstract: As digital microfluidic biochips are widely used in biochemical field, it highly demands the chip reliability and manufacturing costs. Online testing is an important method to ensure the normal work of the digital microfluidic biochips. In this paper, an online parallel testing scheme is proposed based on improved max-min ant colony algorithm for pin-constrained digital microfluidic biochips. The scheme uses pseudo-random-proportional rules, establishes a taboo judgment strategy, and changes the pheromone trail persistence adaptively to realize the online parallel testing of pin-constrained digital microfluidic biochips. The experiment results show that the proposed method can be used for both offline and online testing, and compared with the offline and online testing of the single droplet, the proposed method can effectively reduce the test time and improve the efficiency. -
Xu T and Chakrabarty K. Fault modeling and functional test methods for digital microfluidic biochips[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(4): 241-253. 楊敬松, 姚振靜, 宋燕星, 等. 數(shù)字微流控生物芯片布局的擬人遺傳組合算法[J]. 計算機工程與應(yīng)用, 2012, 48(31): 16-20. Yang Jing-song, Yao Zhen-jing, Song Yan-xing, et al.. Personification and genetic combinational algorithm for placement problem of digital microfluidics-based biochips[J]. Computer Engineering and Applications, 2012, 48(31): 16-20. Xu T and Chakrabarty K. Broadcast electrode-addressing and scheduling methods for pin-constrained digital microfluidic biochip[J]. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2011, 30(7): 986-999. Luo Y and Chakrabarty K. Design of pin-constrained general-purpose digital microfluidic biochips[J]. IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(9): 1307-1320. Grissom D T, McDaniel J, and Brisk P. A low-cost field- programmable pin constrained digital microfluidic biochip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(11): 1657-1670. Su F, Ozev S, and Chakrabarty K. Testing of droplet-based microelectrofluidics systems[C]. Proceedings IEEE International Test Conference, Charlotte, 2003: 1192-1200. Su F, Ozev S, and Chakrabarty K. Test planning and test resource optimization for droplet-based microfluidic systems [J]. Journal of Electronic Testing: Theory and Applications, 2006, 22(2): 199-210. Su F, Hwang W, Mukherjee A, et al.. Testing and diagnosis of realistic defects in digital microfluidic biochips[J]. Journal of Electronic Testing: Theory and Applications, 2007, 23(2/3): 219-233. Xu T and Chakrabarty K. Paralled scan-like test and multiple-defect diagnosis for digital microfluidic biochips[J]. IEEE Transactions on Biomedical Circuits and Systtems, 2007, 1(2): 148-158. 張玲, 鄺繼順, 林靜, 等. 數(shù)字微流控生物芯片的并行在線測試[J]. 上海交通大學(xué)學(xué)報, 2013, 47(1): 98-102. Zhang Ling, Kuang Ji-shun, Lin Jing, et al.. Parallel on-line testing for digital microfluidic biochip[J]. Jouranl of Shanghai Jiao Tong University, 2013, 47(1): 98-102. 張玲, 鄺繼順, 梅軍進, 等. 數(shù)字微流控生物芯片測試診斷過程分析和優(yōu)化[J]. 計算機工程與科學(xué), 2014, 36(3): 411-415. Zhang Ling, Kuang Ji-shun, Mei Jun-jin, et al.. Analysis and optimization of test and diagnosis process for digital microfluidic biochip[J]. Computer Engineering and Science, 2014, 36(3): 411-415. Su F, Ozev S, and Chakrabarty K. Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays[C]. Proceedings IEEE International Test Conference, Charlotte, 2004: 883-892. 楊延慶, 李鵬飛, 何博. 求解TSP問題的改進最大最小蟻群算法[J]. 西安工程大學(xué)學(xué)報, 2010, 24(6): 818-821. Yang Yan-qing, Li Peng-fei, and He Bo. The solution of TSP based on the improved max-min ant colony algorithm[J]. Journal of Xian Polytechnic University, 2010, 24(6): 818-821. 許川佩, 蔡震, 胡聰. 基于蟻群算法的數(shù)字微流控生物芯片在線測試路徑優(yōu)化[J]. 儀器儀表學(xué)報, 2014, 35(6): 1417-1424. Xu Chuan-pei, Cai Zhen, and Hu Cong. On-line test path optimization for digital microfluidic biochips based on ant colony algorithm[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 1417-1424. Royal M W, Jokerst N M, and Fair R B. Droplet-based sensing: Optical microresonator sensors embedded in digital electrowetting microfluidics systems[J]. IEEE Sensors Journal, 2013, 13(12): 4733-4742. Su F, Hwang W, Mukherjee A, et al.. Defect-oriented testing and diagnosis of digital microfluidics-based biochips[C]. Proceedings IEEE International Test Conference, Austin, 2005: 1-10. -
計量
- 文章訪問數(shù): 1157
- HTML全文瀏覽量: 298
- PDF下載量: 436
- 被引次數(shù): 0