基于云模型的DSm證據(jù)建模及雷達(dá)輻射源識別方法
doi: 10.11999/JEIT150053
基金項(xiàng)目:
國家自然科學(xué)基金(61102166, 61471379)和山東省優(yōu)秀中青年科學(xué)家科研獎(jiǎng)勵(lì)基金(BS2013DX003)
DSm Evidence Modeling and Radar Emitter Fusion Recognition Method Based on Cloud Model
-
摘要: 為了提高雷達(dá)輻射源特征參數(shù)存在互相交疊和多個(gè)模式情況的雷達(dá)輻射源正確識別率,該文提出一種基于云模型的DSm(Dezert-Smarandache)證據(jù)建模及雷達(dá)輻射源識別方法。該方法首先將存在互相交疊和多個(gè)模式的先驗(yàn)雷達(dá)輻射源特征參數(shù)進(jìn)行基于云模型的DSm建模,然后將含有噪聲的測量信號特征參數(shù)進(jìn)行基于云模型的DSm隸屬度賦值,再通過隸屬度與基本信度賦值的關(guān)系求得DSm模型的基本信度賦值,最后通過DSmT+PCR5的方法將多傳感器測量信號的同特征的基本信度賦值進(jìn)行融合,再將各特征的融合結(jié)果進(jìn)行DSmT+PCR5融合得到最終的識別結(jié)果,如果僅為單傳感器測量信號的特征參數(shù),則僅將不同特征參數(shù)的基本信度賦值進(jìn)行DSmT+PCR5得到融合識別結(jié)果。最后通過多種情況下的仿真實(shí)驗(yàn),驗(yàn)證了該文方法的優(yōu)越性。
-
關(guān)鍵詞:
- 雷達(dá)輻射源識別 /
- 信息融合 /
- 云模型 /
- 基本信度賦值 /
- Dezert-Smarandache理論
Abstract: To improve the correct radar emitter recognition rate in cases that radar emitter characteristic parameters are overlapped with each other and existence of multiple modes, a DSm (Dezert-Smarandache) evidence modeling and radar emitter fusion recognition method based on cloud model is proposed. First, the radar emitter characteristic parameters which are overlapped and have multiple modes are modeled in DSm frame based on cloud model, then the degree of membership of unkonwn radar emitter signal belonging to prior radar types of each characteristic parameter is obtained by this model. Second, the basic belief assignments in DSm frame based on cloud model are obtained by the relationship between degree of membership and basic belief assignments. Thirdly, the basic belief assignments of the same characteristic parameters of multi-source unkown emitter signal are fused by DSmT+PCR5, then the fusion results of each characteristic parameters are fused to get the final recognition results. If there are only single-source unknown signal characteristic parameters, the basic belief assignments of each characteristic parameter are fused by DSmT+PCR5 to get the final recognition results. Finally, through the simulation experiments in multiple conditions, the superiority of the proposed method is testified well. -
劉海軍, 柳征, 姜文利, 等. 基于聯(lián)合參數(shù)建模的雷達(dá)輻射源識別方法[J]. 宇航學(xué)報(bào), 2011, 32(1): 142-149. Liu Hai-jun, Liu Zheng, Jiang Wen-li, et al.. A joint-parameter modeling based radar emitter identification method[J]. Journal of Astronautics, 2011, 32(1): 142-149. 徐璟, 何明浩, 冒燕, 等. 基于優(yōu)化算法的雷達(dá)輻射源信號識別方法及性能[J]. 現(xiàn)代雷達(dá), 2014, 36(10): 33-37. Xu Jing, He Ming-hao, Mao Yan, et al.. Radar emitter recognition method based on optimization algorithm and performance[J]. Modern Radar, 2014, 36(10): 33-37. 楊承志, 吳宏超, 賈蘋, 等. 基于云模型和支持向量機(jī)的輻射源識別算法[J]. 現(xiàn)代雷達(dá), 2013, 35(10): 41-44. Yang Cheng-zhi, Wu Hong-chao, Jia Ping, et al.. Approach based on cloud model and SVM for emitter identification[J]. Modern Radar, 2013, 35(10): 41-44. 史亞, 姬紅兵, 朱明哲, 等. 多核融合框架下的雷達(dá)輻射源個(gè)體識別[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2484-2490. Shi Ya, Ji Hong-bing, Zhu Ming-zhe, et al.. Specific radar emitter identification in multiple kernel fusion framework [J]. Journal of Electronics Information Technology, 2014, 36(10): 2484-2490. 劉凱, 王杰貴, 李俊武. 基于區(qū)間灰關(guān)聯(lián)的雷達(dá)輻射源識別新方法[J]. 火力與指揮控制, 2013, 38(7): 20-23. Liu Kai, Wang Jie-gui, and Li Jun-wu. A new method based on interval grey association for radar emitter recognition[J]. Fire Control Command Control, 2013, 38(7): 20-23. 關(guān)欣, 孫貴東, 郭強(qiáng), 等. 基于區(qū)間數(shù)和證據(jù)理論的雷達(dá)輻射源參數(shù)識別[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(7): 1269-1274. Guan Xin, Sun Gui-dong, Guo Qiang, et al.. Radar emitter parameter recognition based on interval number and evidence theory[J]. Systems Engineering and Electronics, 2014, 36(7): 1269-1274. 徐志軍, 陳志偉, 王金明, 等. 基于功放特性的輻射源識別的改進(jìn)方法[J]. 南京郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 33(6): 54-58. Xu Zhi-jun, Chen Zhi-wei, Wang Jin-ming, et al.. An improved method for emitter identification based on character of power amplifier[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2013, 33(6): 54-58. 公緒華, 袁振濤, 譚懷英. 基于GMM和神經(jīng)網(wǎng)絡(luò)的輻射源識別方法[J]. 雷達(dá)科學(xué)與技術(shù), 2014, 12(5): 482-486. Gong Xu-hua, Yuan Zhen-tao, and Tan Huai-ying. The methods based on the GMM and neural network for recognition of emitters[J]. Radar Science and Technology, 2014, 12(5): 482-486. 劉海軍, 柳征, 姜文利, 等. 一種基于云模型的輻射源識別方法[J]. 電子與信息學(xué)報(bào), 2009, 31(9): 2079-2083. Liu Hai-jun, Liu Zheng, Jiang Wen-li, et al.. A method for emitter recognition based on cloud model[J]. Journal of Electronics Information Technology, 2009, 31(9): 2079-2083. 付耀文, 楊威, 莊釗文. 證據(jù)建模研究綜述[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(6): 1160-1167. Fu Yao-wen, Yang Wei, and Zhuang Zhao-wen. Review on evidence modeling[J]. Systems Engineering and Electronics, 2013, 35(6): 1160-1167. Smarandache F and Dezert J. Advances and Applications of DSmT for Information Fusion[M]. Vol. 3, Rehoboth, USA: American Research Press, 2009: 54-58. Wang Guo-yin, Xu Chang-lin, and Li De-yi. Generic normal cloud model[J]. Information Sciences, 2014, 280: 1-15. 秦麗, 李兵. 一種基于云模型的不確定性數(shù)據(jù)的建模與分類方法[J]. 計(jì)算機(jī)科學(xué), 2014, 41(8): 233-240. Qin Li and Li Bing. Novel method of uncertain data modeling and classification based on cloud model[J]. Computer Science, 2014, 41(8): 233-240. 徐曉濱, 文成林, 劉榮利. 基于隨機(jī)集理論的多源信息統(tǒng)一表示與建模方法[J]. 電子學(xué)報(bào), 2008, 36(6): 1174-1181. Xu Xiao-bin, Wen Cheng-lin, and Liu Rong-li. The unified method of describing and modeling multisource information based on random set theory[J]. Acta Electronica Sinica, 2008, 36(6): 1174-1181. 彭冬亮, 文成林, 徐曉濱, 等. 隨機(jī)集理論及其在信息融合中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2006, 28(11): 2199-2204. Peng Dong-liang, Wen Cheng-lin, Xu Xiao-bin, et al.. Random set and its application[J]. Journal of Electronics Information Technology, 2006, 28(11): 2199-2204. 李新德, 楊偉東, 吳雪建, 等. 一種快速分層遞階DSmT 近似推理融合方法(B)[J]. 電子學(xué)報(bào), 2011, 3(s1): 31-36. Li Xin-de, Yang Wei-dong, Wu Xue-jian, et al.. A fast approximate reasoning method in hierarchical DSmT(B)[J]. Acta Electronica Sinica, 2011, 3(s1): 31-36. -
計(jì)量
- 文章訪問數(shù): 1435
- HTML全文瀏覽量: 117
- PDF下載量: 796
- 被引次數(shù): 0