多媒體多播組播單頻網(wǎng)中免干擾動(dòng)態(tài)信道分配
doi: 10.11999/JEIT150044
-
2.
(重慶郵電大學(xué)重慶市移動(dòng)通信重點(diǎn)實(shí)驗(yàn)室 重慶 400065) ②(北卡羅來納州立大學(xué)電子與計(jì)算機(jī)工程系 美國北卡羅來納州 27695)
國家青年自然科學(xué)基金(61301122),重慶市科委項(xiàng)目(cstc2014jcyjA 40052)和重慶市教委項(xiàng)目(KJ1400405)
Interference-avoidance Dynamic Channel Allocation for Multimedia Broadcast Multicast Service Single Frequency Networks
-
2.
(Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
The National Natural Science Foundation of China (61301122)
-
摘要: 為了避免多媒體多播組播單頻網(wǎng)(MBSFN)區(qū)域內(nèi)部和區(qū)域之間的干擾,進(jìn)一步提高頻譜效率,該文提出一種改進(jìn)的基于噪聲調(diào)節(jié)時(shí)滯噪聲混沌神經(jīng)網(wǎng)絡(luò)(NHNCNN)的動(dòng)態(tài)信道分配方法。首先,根據(jù)MBSFN區(qū)域的特殊拓?fù)浣Y(jié)構(gòu),重新定義了4種電磁兼容限制函數(shù),在此基礎(chǔ)上精心構(gòu)建了免干擾的NHNCNN能量函數(shù)。其次對(duì)NHNCNN的穩(wěn)態(tài)判定進(jìn)程加以改進(jìn)以提高系統(tǒng)的收斂速度。特別地,采用類二分法聯(lián)合NHNCNN去搜索最小信道分配總數(shù)。仿真結(jié)果表明,利用富足的NHNCNN時(shí)滯、噪聲和混沌神經(jīng)動(dòng)力,所提算法能有效地搜索到合理解,并最終找到全局最優(yōu)解,提高了頻譜效率。與現(xiàn)有方法相比,所提算法能夠?qū)崿F(xiàn)更好的收斂速度和合理解率。
-
關(guān)鍵詞:
- 抗干擾 /
- 動(dòng)態(tài)信道分配 /
- 多媒體多播組播單頻網(wǎng) /
- 噪聲調(diào)節(jié)時(shí)滯噪聲混沌神經(jīng)網(wǎng)絡(luò) /
- 類二分法
Abstract: A dynamic channel allocation algorithm is proposed to avoid all interference and improve spectrum efficiency in Multimedia Broadcast multicast service Single Frequency Networks (MBSFN). Four electromagnetic compatibility constraint functions are redefined according to the topology information of MBSFN. In order to avoid all intra-area and inter-area interference of MBSFN, a novel energy function of Noise-tuning-based Hysteretic Noisy Chaotic Neural Network (NHNCNN) is constructed elaborately based on renewed constraint functions. Also, the judgment process of the stable state of NHNCNN is developed to accelerate system convergence. Specifically, the dichotomy method is adopted jointly to minimize the total number of allocated channels so as to further improve spectrum efficiency. Simulation results show that a feasible solution without any interference can be effectively searched by the improved NHNCNN. Finally, the optimal solution with minimum total channel number is found. Compared with existing algorithms, the proposed algorithm achieves better convergence speed and quality of solution. -
王凡森, 趙拯, 陳志剛. 一種基于子載波合并的多播資源調(diào)度算法[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 1184-1189. Wang F S, Zhao Z, and Chen Z G. A multicast resource scheduling algorithm based on subcarrier merger[J]. Journal of Electronics Information Technology, 2014, 36(5): 1184-1189. Damnjanovic J and Tenny N E. Resource specification for broadcast/multicast services[P]. US, 20140376438, 2014-12-25. Hu Z, Jiang H, Li H, et al.. A low-complexity decoding algorithm for coded hierarchical modulation in single frequency networks[J]. IEEE Transactions on Broadcasting, 2014, 60(2): 302-311. Debessu Y G, Wu H C, Jiang H, et al.. New modified turbo decoder for embedded local content in single-Frequency networks[J]. IEEE Transactions on Broadcasting, 2013, 59(1): 129-135. Lentisco C M, Bellido L, de la Fuente A, et al.. A model to evaluate MBSFN and AL-FEC techniques in a multicast video streaming service[C]. 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 2014: 691-696. Cheng R G, Huang K J, and Yang J S. Radio resource allocation for overlapping MBS zones[C]. Proceedings of the IEEE MWS, Napa Valley, California, 2009: 75-80. Jiang A X, Feng C Y, and Zhang T K. Research on resource allocation in multi-cell MBMS single frequency networks[C]. Proceedings of the IEEE WOCN, Colombo, Sri Lanka, 2010: 1-5. Wang M, Zhang S G, Sun Q Y, et al.. Resources allocation scheme based on mode switch for multicast services in MBSFN[J]. Applied Mechanics and Materials, 2014, 543/547: 3044-3048. Chen S H and Hou T C. Dynamic channel allocation and power control for OFDMA femtocell networks[C]. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, 2014: 1721-1726. Uykan Z and Jantti R. Channel allocation for bidirectional wireless links-part II: algorithms[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3991-4002. Ben M A and Hamdi M. Dynamic multiuser sub-channels allocation and real-time aggregation model for IEEE 802.11 WLANs[J]. IEEE Transactions on Wireless Communications, 2014, 13(11): 6015-6026. Naparstek O and Leshem A. Fully distributed optimal channel assignment for open spectrum access[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 283-294. Moretti M, Abrardo A, and Belleschi M. On the convergence and optimality of reweighted message passing for channel assignment problems[J]. IEEE Signal Processing Letters, 2014, 21(11): 1428-1432. Zhang H B and Wang X X. Resource allocation for downlink OFDM system using noisy chaotic neural network[J]. Electronic Letters, 2011, 47(21): 1201-1202. Sun M, Zhao L, Cao W, et al.. Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks[J]. IEEE Transactions on Neural Networks, 2010, 21(9): 1422-1433. Sun M, Xu Y, Dai X, et al.. Noise-tuning-based hysteretic noisy chaotic neural network for broadcast scheduling problem in wireless multihop networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(12): 1905-1918. Lin S S and Horng S C. Dynamic channel selection and reassignment for cellular mobile system[C]. Proceedings of the IEEE IS3C, Taichung, China, 2014: 1006-1009. -
計(jì)量
- 文章訪問數(shù): 1312
- HTML全文瀏覽量: 122
- PDF下載量: 386
- 被引次數(shù): 0