一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法

張志龍 楊衛(wèi)平 張焱 李吉成

張志龍, 楊衛(wèi)平, 張焱, 李吉成. 基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2144-2150. doi: 10.11999/JEIT141659
引用本文: 張志龍, 楊衛(wèi)平, 張焱, 李吉成. 基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2144-2150. doi: 10.11999/JEIT141659
Zhang Zhi-long, Yang Wei-ping, Zhang Yan, Li Ji-cheng. Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2144-2150. doi: 10.11999/JEIT141659
Citation: Zhang Zhi-long, Yang Wei-ping, Zhang Yan, Li Ji-cheng. Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2144-2150. doi: 10.11999/JEIT141659

基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法

doi: 10.11999/JEIT141659
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61101185, 61302145)和國(guó)家專項(xiàng)課題(0404040604)資助課題

Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform

  • 摘要: 該文提出一種基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法。該方法首先根據(jù)海洋紅外圖像中自然背景和干擾的特性設(shè)計(jì)頻譜殘留變換的模型參數(shù);然后對(duì)海洋紅外圖像實(shí)施頻譜殘留變換;最后在變換圖像上進(jìn)行目標(biāo)檢測(cè)。實(shí)驗(yàn)結(jié)果表明:該方法可以有效消除紅外圖像中的大尺度干擾和圖像噪聲,增強(qiáng)圖像中艦船目標(biāo)的信雜比,提高艦船檢測(cè)的準(zhǔn)確性。
  • Cheng Gong, Han Jun-wei, Guo Lei, et al.. Object detection in remote sensing imagery using a discriminatively trained mixture model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, (85): 32-43.
    Cheng Gong, Han Jun-wei, Zhou Pei-cheng, et al.. Multi- class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, (98): 119-132.
    Han Jun-wei, Zhou Pei-cheng, Zhang Ding-wen, et al.. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, (89): 37-48.
    An Zhen-yu, Shi Zhen-wei, Teng Xichao, et al.. An automated airplane detection system for large panchromaticimage with high spatial resolution[J]. Optik- International Journal for Light and Electron Optics, 2014, 125(12): 2768-2775.
    Zhang Wan-ceng, Sun Xian, Wang Hong-qi, et al.. A generic discriminative part-based model for geospatial object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99(1): 30-44.
    張亮. SAR 圖像艦船目標(biāo)檢測(cè)方法研究[D]. [碩士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2007.
    Zhang Liang. Detection of ship in SAR image[D]. [Master dissertation], National University of Defense Technology, 2007.
    陳海亮. 基于特征的光學(xué)遙感圖像艦船目標(biāo)檢測(cè)技術(shù)研究[D]. [碩士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2010.
    Chen Hai-liang. Feature based method for ship detection in optical remote sensing image[D]. [Master dissertation], Graduate School of National University of Defense Technology, 2010.
    Hou X and Zhang L. Saliency detection: a spectral residual approach[C]. Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, Minnesota, USA, 2007: 1-8.
    Harel J, Koch C, and Perona P. Graph-based visual saliency[C]. Proceedings of the 20th Neural Information Processing Systems (NIPS 2006), Vancouver, British Columbia, Canada, 2006: 545-552.
    Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems (ICVS 2008), Santorini, Greece, 2008: 66-75.
    Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the 2009 Computer Vision and Pattern Recognition, 2009(CVPR 2009), Miami, Florida, USA, 2009: 1597-1604.
    Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    許軍毅, 計(jì)科峰, 雷琳, 等. 基于GLRT的光學(xué)衛(wèi)星遙感圖像艦船目標(biāo)檢測(cè)[J]. 遙感技術(shù)與應(yīng)用, 2012, 27(4): 616-622.
    Xu Jun-yi, Ji Ke-feng, Lei Lin, et al.. Ship target detection from optical satellite remote sensing image based on GLRT [J]. Remote Sensing Technology and Application, 2012, 27(4): 616-622.
    Smith M E and Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847.
    Farrouki A and Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(1): 43-51.
    Harm G. Developments in detection algorithms at JRC[C]. The Third Meeting of the DECLIMS Project, Vancouver, BC, 2004: 1-7.
    唐沐恩, 林挺強(qiáng), 文貢堅(jiān). 遙感圖像中艦船檢測(cè)方法綜述[J].計(jì)算機(jī)應(yīng)用研究, 2011, 28(1): 29-36.
    Tang Mu-en, Lin Ting-qiang, and Wen Gong-jian. Overview of ship detection methods in remote sensing image[J]. Application Research of Computers, 2011, 28(1): 29-36.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1563
  • HTML全文瀏覽量:  114
  • PDF下載量:  671
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-12-16
  • 修回日期:  2015-05-18
  • 刊出日期:  2015-09-19

目錄

    /

    返回文章
    返回