基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法
doi: 10.11999/JEIT141659
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61101185, 61302145)和國(guó)家專項(xiàng)課題(0404040604)資助課題
Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform
-
摘要: 該文提出一種基于頻譜殘留變換的紅外遙感圖像艦船目標(biāo)檢測(cè)方法。該方法首先根據(jù)海洋紅外圖像中自然背景和干擾的特性設(shè)計(jì)頻譜殘留變換的模型參數(shù);然后對(duì)海洋紅外圖像實(shí)施頻譜殘留變換;最后在變換圖像上進(jìn)行目標(biāo)檢測(cè)。實(shí)驗(yàn)結(jié)果表明:該方法可以有效消除紅外圖像中的大尺度干擾和圖像噪聲,增強(qiáng)圖像中艦船目標(biāo)的信雜比,提高艦船檢測(cè)的準(zhǔn)確性。
-
關(guān)鍵詞:
- 紅外遙感圖像 /
- 艦船目標(biāo)檢測(cè) /
- 信雜比 /
- 視覺顯著性 /
- 譜殘留模型
Abstract: A ship detection algorithm based on spectral residual transform is presented to detect ship in infrared remote sensing images. Firstly, the model parameters of spectral residual transform are designed according to the prior knowledge of ship and its natural backgrounds. Secondly, the spectral residual transform of sea infrared image is implemented. Thirdly, ship detection is done on the spectral residual transform image. Experimental results reveal that the new detection algorithm can remove large scale image interference and the image noise and improve the SCR of ship image. The detecting probability of the new algorithm is higher than other conventional methods. -
Cheng Gong, Han Jun-wei, Guo Lei, et al.. Object detection in remote sensing imagery using a discriminatively trained mixture model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, (85): 32-43. Cheng Gong, Han Jun-wei, Zhou Pei-cheng, et al.. Multi- class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, (98): 119-132. Han Jun-wei, Zhou Pei-cheng, Zhang Ding-wen, et al.. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, (89): 37-48. An Zhen-yu, Shi Zhen-wei, Teng Xichao, et al.. An automated airplane detection system for large panchromaticimage with high spatial resolution[J]. Optik- International Journal for Light and Electron Optics, 2014, 125(12): 2768-2775. Zhang Wan-ceng, Sun Xian, Wang Hong-qi, et al.. A generic discriminative part-based model for geospatial object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99(1): 30-44. 張亮. SAR 圖像艦船目標(biāo)檢測(cè)方法研究[D]. [碩士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2007. Zhang Liang. Detection of ship in SAR image[D]. [Master dissertation], National University of Defense Technology, 2007. 陳海亮. 基于特征的光學(xué)遙感圖像艦船目標(biāo)檢測(cè)技術(shù)研究[D]. [碩士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2010. Chen Hai-liang. Feature based method for ship detection in optical remote sensing image[D]. [Master dissertation], Graduate School of National University of Defense Technology, 2010. Hou X and Zhang L. Saliency detection: a spectral residual approach[C]. Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, Minnesota, USA, 2007: 1-8. Harel J, Koch C, and Perona P. Graph-based visual saliency[C]. Proceedings of the 20th Neural Information Processing Systems (NIPS 2006), Vancouver, British Columbia, Canada, 2006: 545-552. Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems (ICVS 2008), Santorini, Greece, 2008: 66-75. Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the 2009 Computer Vision and Pattern Recognition, 2009(CVPR 2009), Miami, Florida, USA, 2009: 1597-1604. Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. 許軍毅, 計(jì)科峰, 雷琳, 等. 基于GLRT的光學(xué)衛(wèi)星遙感圖像艦船目標(biāo)檢測(cè)[J]. 遙感技術(shù)與應(yīng)用, 2012, 27(4): 616-622. Xu Jun-yi, Ji Ke-feng, Lei Lin, et al.. Ship target detection from optical satellite remote sensing image based on GLRT [J]. Remote Sensing Technology and Application, 2012, 27(4): 616-622. Smith M E and Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847. Farrouki A and Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(1): 43-51. Harm G. Developments in detection algorithms at JRC[C]. The Third Meeting of the DECLIMS Project, Vancouver, BC, 2004: 1-7. 唐沐恩, 林挺強(qiáng), 文貢堅(jiān). 遙感圖像中艦船檢測(cè)方法綜述[J].計(jì)算機(jī)應(yīng)用研究, 2011, 28(1): 29-36. Tang Mu-en, Lin Ting-qiang, and Wen Gong-jian. Overview of ship detection methods in remote sensing image[J]. Application Research of Computers, 2011, 28(1): 29-36. -
計(jì)量
- 文章訪問(wèn)數(shù): 1563
- HTML全文瀏覽量: 114
- PDF下載量: 671
- 被引次數(shù): 0