一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一類非線性信號(hào)去噪的奇異值分解有效迭代方法

查翔 倪世宏 張鵬

查翔, 倪世宏, 張鵬. 一類非線性信號(hào)去噪的奇異值分解有效迭代方法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1330-1335. doi: 10.11999/JEIT141605
引用本文: 查翔, 倪世宏, 張鵬. 一類非線性信號(hào)去噪的奇異值分解有效迭代方法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1330-1335. doi: 10.11999/JEIT141605
Zha Xiang, Ni Shi-hong, Zhang Peng. Effective Iteration Method of a Class of Nonlinear Signal Denoising Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1330-1335. doi: 10.11999/JEIT141605
Citation: Zha Xiang, Ni Shi-hong, Zhang Peng. Effective Iteration Method of a Class of Nonlinear Signal Denoising Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1330-1335. doi: 10.11999/JEIT141605

一類非線性信號(hào)去噪的奇異值分解有效迭代方法

doi: 10.11999/JEIT141605
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61372167, 61379104)資助課題

Effective Iteration Method of a Class of Nonlinear Signal Denoising Based on Singular Value Decomposition

  • 摘要: 對(duì)于一類非線性信號(hào)的去噪問(wèn)題,該文提出一種基于奇異值分解(Singular Value Decomposition, SVD)的有效迭代方法。對(duì)現(xiàn)有奇異值差分譜方法在兩類不同非線性信號(hào)上的去噪效果進(jìn)行了對(duì)比,指出在信號(hào)不具有明顯特征頻率、非周期性變化時(shí)這一方法并不適用,并分析了現(xiàn)象產(chǎn)生的原因;然后針對(duì)該類信號(hào)的特點(diǎn)重新定義了Hankel矩陣結(jié)構(gòu),給出有效奇異值的確定方式,并通過(guò)SVD多次迭代過(guò)程實(shí)現(xiàn)對(duì)該類信號(hào)的有效去噪。對(duì)實(shí)際飛行數(shù)據(jù)去噪的實(shí)驗(yàn)結(jié)果表明,該方法對(duì)提出的一類信號(hào)對(duì)象不僅去噪效果良好,而且可提高運(yùn)算效率。
  • Massari C, Brocca L, Ciabatta L, et al.. A Wiener-wavelet based filter for de-noising satellite soil moisture retrievals[C]. Proceedings of the EGU General Assembly, Vienna, Austria, 2014: 1123-1148.
    Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(2): 613-618.
    He Wang-peng, Zi Yan-yang, Chen Bin-qiang, et al.. Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis[J]. SCIENCE CHINA Technological Sciences, 2013, 56(8): 1956-1965.
    Maryam A and Rodrigo Q Q. Automatic denoising of single-trial evoked potentials[J]. NeuroImage, 2013, 66(10): 672-680.
    Pascal P M, Christian B, and Florence B. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing unites[J]. Solid State Nuclear Magnetic Resonance, 2014, 61(5): 28-34.
    Li Zhen-xing and Dai Wei-xiao. Local mean decomposition combined with SVD and application in telemetry vibration signal processing[J]. Applied Mechanics and Materials, 2013, 347(2): 854-858.
    Ajit R, Anand R, and Arunava B. Image denoising using the higher order singular value decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849-862.
    Cheng D H, Xu Q J, and Yao W F. Regional wind energy resource forecasting based on SVD and support vector machine[J]. Advanced Materials Research, 2014, 247(12): 1070-1072.
    趙學(xué)智, 葉邦彥, 陳統(tǒng)堅(jiān). 奇異值差分譜理論及其在車床主軸箱故障診斷中的應(yīng)用[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(1): 100-108.
    Zhao Xue-zhi, Ye Bang-yan, and Chen Tong-jian. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe[J]. Journal of Mechanical Engineering, 2010, 46(1): 100-108.
    呂永樂, 郎榮玲. 基于奇異值分解的飛行數(shù)據(jù)降噪方法[J]. 計(jì)算機(jī)工程, 2010, 36(3): 260-262.
    L Yong-le and Lang Rong-ling. Noise reduction method for flight data based on singular value decomposition[J]. Computer Engineering, 2010, 36(3): 260-262.
    Zhao H M, Shen H, Fu Y, et al.. Using singular value decomposition and high order spectrum for bearings fault diagnosis[C]. Proceedings of the IEEE Transportation Electrification Conference and Expo Asia-Pacific(ITEC Asia-Pacific), Beijing, China, 2014: 1-4.
    Zhao Xue-zhi and Ye Bang-yan. Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1617-1631.
    雷達(dá), 鐘詩(shī)勝. 基于奇異值分解和經(jīng)驗(yàn)?zāi)B(tài)分解的航空發(fā)動(dòng)機(jī)健康信號(hào)降噪[J]. 吉林大學(xué)學(xué)報(bào), 2013, 43(3): 764-770.
    Lei Da and Zhong Shi-sheng. Aircraft engine health signal denoising based on singular value decomposition and empirical mode decomposition methods[J]. Journal of Jilin University, 2013, 43(3): 764-770.
    趙學(xué)智, 葉邦彥, 陳統(tǒng)堅(jiān). 基于小波-奇異值分解差分譜的弱故障特征提取方法[J]. 機(jī)械工程學(xué)報(bào), 2012, 48(7): 37-48.
    Zhao Xue-zhi, Ye Bang-yan, and Chen Tong-jian. Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering, 2012, 48(7): 37-48.
    Brand M. Incremental singular value decomposition of uncertain data with missing values[C]. Proceeding of the 2002 European Conference on Computer Vision, Copenhagen, Denmark, 2002: 1-12.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1497
  • HTML全文瀏覽量:  245
  • PDF下載量:  830
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-12-15
  • 修回日期:  2015-03-05
  • 刊出日期:  2015-06-19

目錄

    /

    返回文章
    返回