一類非線性信號(hào)去噪的奇異值分解有效迭代方法
doi: 10.11999/JEIT141605
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61372167, 61379104)資助課題
Effective Iteration Method of a Class of Nonlinear Signal Denoising Based on Singular Value Decomposition
-
摘要: 對(duì)于一類非線性信號(hào)的去噪問(wèn)題,該文提出一種基于奇異值分解(Singular Value Decomposition, SVD)的有效迭代方法。對(duì)現(xiàn)有奇異值差分譜方法在兩類不同非線性信號(hào)上的去噪效果進(jìn)行了對(duì)比,指出在信號(hào)不具有明顯特征頻率、非周期性變化時(shí)這一方法并不適用,并分析了現(xiàn)象產(chǎn)生的原因;然后針對(duì)該類信號(hào)的特點(diǎn)重新定義了Hankel矩陣結(jié)構(gòu),給出有效奇異值的確定方式,并通過(guò)SVD多次迭代過(guò)程實(shí)現(xiàn)對(duì)該類信號(hào)的有效去噪。對(duì)實(shí)際飛行數(shù)據(jù)去噪的實(shí)驗(yàn)結(jié)果表明,該方法對(duì)提出的一類信號(hào)對(duì)象不僅去噪效果良好,而且可提高運(yùn)算效率。Abstract: To solve a class of nonlinear signal denoising, an effective iteration method based on the Singular Value Decomposition (SVD) is proposed. When the signals have no obvious characteristic frequency and non-periodic change, the current difference spectrum method is not applicable by comparing the results on the two class of nonlinear signal, and then the corresponding reason is analyzed. According to the signal feature, the structure of the Hankel matrix is defined again and the valid singular values are determined. The effective denoising is realized by the repeated iteration which is based on the SVD. The results of the flight data demonstrate that the proposed method can effectively reduce the noise and improve the computing efficiency as well.
-
Massari C, Brocca L, Ciabatta L, et al.. A Wiener-wavelet based filter for de-noising satellite soil moisture retrievals[C]. Proceedings of the EGU General Assembly, Vienna, Austria, 2014: 1123-1148. Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(2): 613-618. He Wang-peng, Zi Yan-yang, Chen Bin-qiang, et al.. Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis[J]. SCIENCE CHINA Technological Sciences, 2013, 56(8): 1956-1965. Maryam A and Rodrigo Q Q. Automatic denoising of single-trial evoked potentials[J]. NeuroImage, 2013, 66(10): 672-680. Pascal P M, Christian B, and Florence B. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing unites[J]. Solid State Nuclear Magnetic Resonance, 2014, 61(5): 28-34. Li Zhen-xing and Dai Wei-xiao. Local mean decomposition combined with SVD and application in telemetry vibration signal processing[J]. Applied Mechanics and Materials, 2013, 347(2): 854-858. Ajit R, Anand R, and Arunava B. Image denoising using the higher order singular value decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849-862. Cheng D H, Xu Q J, and Yao W F. Regional wind energy resource forecasting based on SVD and support vector machine[J]. Advanced Materials Research, 2014, 247(12): 1070-1072. 趙學(xué)智, 葉邦彥, 陳統(tǒng)堅(jiān). 奇異值差分譜理論及其在車床主軸箱故障診斷中的應(yīng)用[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(1): 100-108. Zhao Xue-zhi, Ye Bang-yan, and Chen Tong-jian. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe[J]. Journal of Mechanical Engineering, 2010, 46(1): 100-108. 呂永樂, 郎榮玲. 基于奇異值分解的飛行數(shù)據(jù)降噪方法[J]. 計(jì)算機(jī)工程, 2010, 36(3): 260-262. L Yong-le and Lang Rong-ling. Noise reduction method for flight data based on singular value decomposition[J]. Computer Engineering, 2010, 36(3): 260-262. Zhao H M, Shen H, Fu Y, et al.. Using singular value decomposition and high order spectrum for bearings fault diagnosis[C]. Proceedings of the IEEE Transportation Electrification Conference and Expo Asia-Pacific(ITEC Asia-Pacific), Beijing, China, 2014: 1-4. Zhao Xue-zhi and Ye Bang-yan. Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1617-1631. 雷達(dá), 鐘詩(shī)勝. 基于奇異值分解和經(jīng)驗(yàn)?zāi)B(tài)分解的航空發(fā)動(dòng)機(jī)健康信號(hào)降噪[J]. 吉林大學(xué)學(xué)報(bào), 2013, 43(3): 764-770. Lei Da and Zhong Shi-sheng. Aircraft engine health signal denoising based on singular value decomposition and empirical mode decomposition methods[J]. Journal of Jilin University, 2013, 43(3): 764-770. 趙學(xué)智, 葉邦彥, 陳統(tǒng)堅(jiān). 基于小波-奇異值分解差分譜的弱故障特征提取方法[J]. 機(jī)械工程學(xué)報(bào), 2012, 48(7): 37-48. Zhao Xue-zhi, Ye Bang-yan, and Chen Tong-jian. Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering, 2012, 48(7): 37-48. Brand M. Incremental singular value decomposition of uncertain data with missing values[C]. Proceeding of the 2002 European Conference on Computer Vision, Copenhagen, Denmark, 2002: 1-12. -
計(jì)量
- 文章訪問(wèn)數(shù): 1497
- HTML全文瀏覽量: 245
- PDF下載量: 830
- 被引次數(shù): 0