L0范數(shù)平滑逼近的穩(wěn)健求解算法
doi: 10.11999/JEIT141590
-
2.
(西安電子科技大學(xué)綜合業(yè)務(wù)網(wǎng)國家重點實驗室 西安 710071) ②(空軍工程大學(xué)航空航天工程學(xué)院 西安 710038)
基金項目:
國家自然科學(xué)基金(61379104)和陜西省自然科學(xué)基金(2014JM2- 6106)
Robust Computational Methods for Smoothed L0 Approximation
-
2.
(State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China)
Funds:
The National Natural Science Foundation of China (61379104)
-
摘要: 該文研究基于代理函數(shù)和先驗概率密度的L0范數(shù)平滑逼近問題的穩(wěn)健求解。首先,分析了平滑逼近函數(shù)的凹凸特性,給出提高恢復(fù)性能的參數(shù)調(diào)整策略與改進(jìn)的SL0和FOCUSS算法。其次,將噪聲背景下L0范數(shù)逼近過程進(jìn)行正則化表示,并基于牛頓方向推導(dǎo)其迭代重加權(quán)形式的求解框架,給出一種新的代理函數(shù)。最后,使用數(shù)值仿真證實了所提算法可以提高此類問題的求解的穩(wěn)健性,具有實用價值。
-
關(guān)鍵詞:
- 非凸壓縮感知 /
- L0范數(shù)平滑逼近 /
- 迭代重加權(quán)算法
Abstract: Computational framework using surrogate functions and prior probability density functions, for smoothed L0 minimization approximation is studied in this paper, for the purpose of improving the recovery performance of non-convex compressed sensing. Firstly, a simple parameter adjusting strategy and modified SL0 and FOCUSS are presented, based on the convex-concave property analysis of approximation functions. Secondly, since L0 approximation problem can be viewed as a L0-Regularized Least Squares problem in noisy setting,a new computational framework called IRSL0 (Iteratively Reweighted SL0) is derived from the Newton direction, furthermore, a new surrogate function is also given. Finally, extensive numerical simulations demonstrate the robustness and applicability of the new theory and algorithms. -
Cands E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. Mohimani H, Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed L0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301. Hyder M M and Mahata K. An improved smoothed L0 approximation algorithm for sparse representation[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2194-2205. Lv J, Huang L, Shi Y, et al.. Inverse synthetic aperture radar imaging via modified smoothed L0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(7): 1235-1238. Liu Z, You P, Wei X, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045. Guo L and Wen X. SAR image compression and reconstruction based on compressed sensing[J]. Journal of Information Computational Science, 2014, 11(2): 573-579. Liu Z, Wei X, and Li X. Aliasing-free micro-Doppler analysis based on short-time compressed sensing[J]. IET Signal Processing, 2013, 8(2): 176-187. Liu T and Zhou J. Improved smoothed L0 reconstruction algorithm for ISI sparse channel estimation[J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21(2): 40-47. Ye X and Zhu W. Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2-SL0 reconstruction algorithm[J]. IET Communications, 2014, 8(7): 1124-1131. 王軍華, 黃知濤, 周一宇, 等. 基于近似L0 范數(shù)的穩(wěn)健稀疏重構(gòu)算法[J]. 電子學(xué)報, 2012, 40(6): 1185-1189. Wang Jun-hua, Huang Zhi-tao, Zhou Yi-yu, et al.. Robust sparse recovery based on approximate L0 norm[J]. Acta Electronica Sinica, 2012, 40(6): 1185-1189. 趙瑞珍, 林婉娟, 李浩, 等. 基于光滑L0范數(shù)和修正牛頓法的壓縮感知重建算法[J]. 計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報, 2012, 24(4): 478-484. Zhao Rui-zhen, Lin Wan-juan, Li Hao, et al.. Reconstruction algorithm for compressive sensing based on smoothed L0 norm and revised newton method[J]. Journal of Computer- Aided Design Computer Graphic, 2012, 24(4): 478-484. 楊良龍, 趙生妹, 鄭寶玉, 等. 基于SL0 壓縮感知信號重建的改進(jìn)算法[J]. 信號處理, 2012, 28(6): 834-841. Yang Liang-long, Zhao Sheng-mei, Zheng Bao-yu, et al.. The improved reconstruction algorithm for compressive sensing on SL0[J]. Signal Processing, 2012, 28(6): 834-841. 余付平, 沈堤. 基于擬牛頓方向的改進(jìn)平滑L0 算法[J]. 計算機(jī)工程與應(yīng)用, 2013, 49(22): 215-218. Yu Fu-ping and Shen Di. Improved smoothed L0 approximation algorithm based on Quasi-Newton direction[J]. Computer Engineering and Applications, 2013, 49(22): 215-218. 賀亞鵬, 莊珊娜, 張燕洪, 等. 一種基于交叉驗證的穩(wěn)健SL0目標(biāo)參數(shù)提取算法[J]. 系統(tǒng)工程與電子技術(shù), 2012, 34(1): 64-68. He Ya-peng, Zhuang Shan-na, Zhang Yan-hong, et al.. Cross validation based robust-SL0 algorithm for target parameter extraction[J]. Systems Engineering and Electronics, 2012, 34(1): 64-68. 邱偉, 趙宏鐘, 陳建軍, 等. 基于平滑L0 范數(shù)的高分辨雷達(dá)一維成像研究[J]. 電子與信息學(xué)報, 2011, 33(12): 2869-2874. Qiu Wei, Zhao Hong-zhong, Chen Jian-jun, et al.. High- resolution radar one-dimensional imaging based on smoothed L0 norm[J]. Journal of Electronics Information Technology, 2011, 33(12): 2869-2874. Gorodnitsky I F and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. Pant J K, Lu W, and Antoniou A. New improved algorithms for compressive sensing based on Lp norm[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(3): 198-202. Yuille A L and Rangarajan A. The concave-convex procedure [J]. Neural Computer, 2003, 15(4): 915-936. Rao B D, Engan K, Cotter S F, et al.. Subset selection in noise based on diversity measure minimization[J]. IEEE Transactions on Signal Processing, 2003, 51(3): 760-770. -
計量
- 文章訪問數(shù): 1748
- HTML全文瀏覽量: 166
- PDF下載量: 978
- 被引次數(shù): 0