一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

L0范數(shù)平滑逼近的穩(wěn)健求解算法

王峰 向新 易克初 熊磊

王峰, 向新, 易克初, 熊磊. L0范數(shù)平滑逼近的穩(wěn)健求解算法[J]. 電子與信息學(xué)報, 2015, 37(10): 2377-2382. doi: 10.11999/JEIT141590
引用本文: 王峰, 向新, 易克初, 熊磊. L0范數(shù)平滑逼近的穩(wěn)健求解算法[J]. 電子與信息學(xué)報, 2015, 37(10): 2377-2382. doi: 10.11999/JEIT141590
Wang Feng, Xiang Xin, Yi Ke-chu, Xiong Lei. Robust Computational Methods for Smoothed L0 Approximation[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2377-2382. doi: 10.11999/JEIT141590
Citation: Wang Feng, Xiang Xin, Yi Ke-chu, Xiong Lei. Robust Computational Methods for Smoothed L0 Approximation[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2377-2382. doi: 10.11999/JEIT141590

L0范數(shù)平滑逼近的穩(wěn)健求解算法

doi: 10.11999/JEIT141590
基金項目: 

國家自然科學(xué)基金(61379104)和陜西省自然科學(xué)基金(2014JM2- 6106)

Robust Computational Methods for Smoothed L0 Approximation

Funds: 

The National Natural Science Foundation of China (61379104)

  • 摘要: 該文研究基于代理函數(shù)和先驗概率密度的L0范數(shù)平滑逼近問題的穩(wěn)健求解。首先,分析了平滑逼近函數(shù)的凹凸特性,給出提高恢復(fù)性能的參數(shù)調(diào)整策略與改進(jìn)的SL0和FOCUSS算法。其次,將噪聲背景下L0范數(shù)逼近過程進(jìn)行正則化表示,并基于牛頓方向推導(dǎo)其迭代重加權(quán)形式的求解框架,給出一種新的代理函數(shù)。最后,使用數(shù)值仿真證實了所提算法可以提高此類問題的求解的穩(wěn)健性,具有實用價值。
  • Cands E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    Mohimani H, Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed L0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
    Hyder M M and Mahata K. An improved smoothed L0 approximation algorithm for sparse representation[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2194-2205.
    Lv J, Huang L, Shi Y, et al.. Inverse synthetic aperture radar imaging via modified smoothed L0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(7): 1235-1238.
    Liu Z, You P, Wei X, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
    Guo L and Wen X. SAR image compression and reconstruction based on compressed sensing[J]. Journal of Information Computational Science, 2014, 11(2): 573-579.
    Liu Z, Wei X, and Li X. Aliasing-free micro-Doppler analysis based on short-time compressed sensing[J]. IET Signal Processing, 2013, 8(2): 176-187.
    Liu T and Zhou J. Improved smoothed L0 reconstruction algorithm for ISI sparse channel estimation[J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21(2): 40-47.
    Ye X and Zhu W. Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2-SL0 reconstruction algorithm[J]. IET Communications, 2014, 8(7): 1124-1131.
    王軍華, 黃知濤, 周一宇, 等. 基于近似L0 范數(shù)的穩(wěn)健稀疏重構(gòu)算法[J]. 電子學(xué)報, 2012, 40(6): 1185-1189.
    Wang Jun-hua, Huang Zhi-tao, Zhou Yi-yu, et al.. Robust sparse recovery based on approximate L0 norm[J]. Acta Electronica Sinica, 2012, 40(6): 1185-1189.
    趙瑞珍, 林婉娟, 李浩, 等. 基于光滑L0范數(shù)和修正牛頓法的壓縮感知重建算法[J]. 計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報, 2012, 24(4): 478-484.
    Zhao Rui-zhen, Lin Wan-juan, Li Hao, et al.. Reconstruction algorithm for compressive sensing based on smoothed L0 norm and revised newton method[J]. Journal of Computer- Aided Design Computer Graphic, 2012, 24(4): 478-484.
    楊良龍, 趙生妹, 鄭寶玉, 等. 基于SL0 壓縮感知信號重建的改進(jìn)算法[J]. 信號處理, 2012, 28(6): 834-841.
    Yang Liang-long, Zhao Sheng-mei, Zheng Bao-yu, et al.. The improved reconstruction algorithm for compressive sensing on SL0[J]. Signal Processing, 2012, 28(6): 834-841.
    余付平, 沈堤. 基于擬牛頓方向的改進(jìn)平滑L0 算法[J]. 計算機(jī)工程與應(yīng)用, 2013, 49(22): 215-218.
    Yu Fu-ping and Shen Di. Improved smoothed L0 approximation algorithm based on Quasi-Newton direction[J]. Computer Engineering and Applications, 2013, 49(22): 215-218.
    賀亞鵬, 莊珊娜, 張燕洪, 等. 一種基于交叉驗證的穩(wěn)健SL0目標(biāo)參數(shù)提取算法[J]. 系統(tǒng)工程與電子技術(shù), 2012, 34(1): 64-68.
    He Ya-peng, Zhuang Shan-na, Zhang Yan-hong, et al.. Cross validation based robust-SL0 algorithm for target parameter extraction[J]. Systems Engineering and Electronics, 2012, 34(1): 64-68.
    邱偉, 趙宏鐘, 陳建軍, 等. 基于平滑L0 范數(shù)的高分辨雷達(dá)一維成像研究[J]. 電子與信息學(xué)報, 2011, 33(12): 2869-2874.
    Qiu Wei, Zhao Hong-zhong, Chen Jian-jun, et al.. High- resolution radar one-dimensional imaging based on smoothed L0 norm[J]. Journal of Electronics Information Technology, 2011, 33(12): 2869-2874.
    Gorodnitsky I F and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.
    Pant J K, Lu W, and Antoniou A. New improved algorithms for compressive sensing based on Lp norm[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(3): 198-202.
    Yuille A L and Rangarajan A. The concave-convex procedure [J]. Neural Computer, 2003, 15(4): 915-936.
    Rao B D, Engan K, Cotter S F, et al.. Subset selection in noise based on diversity measure minimization[J]. IEEE Transactions on Signal Processing, 2003, 51(3): 760-770.
  • 加載中
計量
  • 文章訪問數(shù):  1748
  • HTML全文瀏覽量:  166
  • PDF下載量:  978
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-12-11
  • 修回日期:  2015-06-03
  • 刊出日期:  2015-10-19

目錄

    /

    返回文章
    返回