基于局部方差的MIMO頻譜感知算法研究
doi: 10.11999/JEIT141540
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61271299),博士后科學(xué)基金(2014M562372)和高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃項(xiàng)目(B08038)
MIMO Spectrum Sensing Method Based on the Local Variance
-
摘要: 在認(rèn)知無(wú)線電網(wǎng)絡(luò)中,高效且準(zhǔn)確的頻譜感知是必不可少的一個(gè)環(huán)節(jié)。該文主要研究了MIMO場(chǎng)景下的頻譜感知問(wèn)題??紤]到頻譜被主用戶占用和頻譜空閑這兩種場(chǎng)景下,認(rèn)知用戶各天線接收到信號(hào)之間的相關(guān)結(jié)構(gòu)有差異,針對(duì)接收信號(hào)的采樣協(xié)方差矩陣,提出了局部方差的概念,并在此基礎(chǔ)上設(shè)計(jì)了基于局部方差的MIMO頻譜感知方法。根據(jù)漸近分布理論,推導(dǎo)了所述方法的理論檢測(cè)門限。最后,采用蒙特卡洛仿真方法,分別分析了AWGN信道和Rayleigh信道下該方法的檢測(cè)性能,并與相關(guān)的感知算法進(jìn)行了對(duì)比。結(jié)果表明:在相同的環(huán)境下,該文所提方法相比其他方法檢測(cè)性能更高,且所需的采樣點(diǎn)數(shù)更小,能夠?qū)崿F(xiàn)快速且精確的檢測(cè)。
-
關(guān)鍵詞:
- 認(rèn)知無(wú)線電 /
- 頻譜感知 /
- 采樣協(xié)方差矩陣 /
- 局部方差
Abstract: Efficient and accurate spectrum sensing is a necessary part in cognitive radio network. This paper focuses on the spectrum sensing in MIMO environment. Based on the fact that the correlation structure of the received signals is different between the cases of signal-presence and signal-absence, a new concept of local variance is presented and the test statistic is constructed by the local variance. The theoretical threshold is derived according to the asymptotic distribution theorem. Finally, the detection performance comparison with other methods in AWGN channel and Rayleigh channel are simulated respectively. The results show that the proposed method outperforms other algorithms and needs small sample numbers, thus it has higher sensing accuracy and efficiency.-
Key words:
- Cognitive radio /
- Spectrum sensing /
- Sample covariance matrix /
- Local variance
-
Axell E, Leus G, Larsson E G, et al.. Spectrum sensing for cognitive radio: State-of-the-art and recent advances[J]. IEEE Signal Processing Magazine, 2012, 29(3): 101-116. Yucek T and Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys Tutorials, 2009, 11(1): 116-130. Ghozzi M, Marx F, Dohler M, et al.. Cyclostatilonarilty- based test for detection of vacant frequency bands[C]. 1st IEEE International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, 2006: 1-5. Zhu Y, Liu J, Feng Z, et al.. Sensing performance of efficient cyclostationary detector with multiple antennas in multipath fading and lognormal shadowing environments[J]. Journal of Communications and Networks, 2014, 16(2): 162-171. Sutton P D, ?zgl B, and Doyle L E. Cyclostationary signatures for LTE advanced and beyond[J]. Physical Communication, 2014, 2014(10): 179-189. Srinu S and Sabat S L. Effective cooperative wideband sensing using energy detection under suspicious cognitive radio network[J]. Computers Electrical Engineering, 2013, 39(4): 1153-1163. Sofotasios P C, Rebeiz E, Zhang L, et al.. Energy detection based spectrum sensing over and extreme fading channels[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1031-1040. Gokceoglu A, Dikmese S, Valkama M, et al.. Energy detection under IQ imbalance with single-and multi-channel direct-conversion receiver: analysis and mitigation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(3): 411-424. Zeng Y and Liang Y C. Maximum-minimum eigenvalue detection for cognitive radio[C]. Proceedings. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, 2007: 1-5. Lim T J, Zhang R, Liang Y C, et al.. GLRT-based spectrum sensing for cognitive radio[C]. IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, LO, 2008: 1-5. Lpez-Valcarce R, Vazquez-Vilar G, and Sala J. Multiantenna spectrum sensing for cognitive radio: overcoming noise uncertainty[C]. 2010 2nd IEEE International Workshop on Cognitive Information Processing (CIP), Elba, 2010: 310-315. Zeng Y and Liang Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1804-1815. Huang L, So H C, and Qian C. Volume-based method for spectrum sensing[J]. Digital Signal Processing, 2014, 2014(28): 48-56. John G Proakis. Digital Communications, Fifth Edition [M]. New York, McGraw-Hill, 2009: 46-48. Abdi A and Kaveh M. A space-time correlation model for multielement antenna systems in mobile fading channels[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 550-560. -
計(jì)量
- 文章訪問(wèn)數(shù): 1373
- HTML全文瀏覽量: 89
- PDF下載量: 507
- 被引次數(shù): 0