面向節(jié)點異構(gòu)的能耗感知虛擬網(wǎng)絡映射算法
doi: 10.11999/JEIT141527
-
1.
(空軍工程大學信息與導航學院 西安 710077) ②(空軍工程大學防空反導學院 西安 710051)
基金項目:
國家自然科學基金(51075395)和國家863計劃項目(2013AA040604)
Energy-aware Virtual Network Embedding Algorithm for Heterogeneous Nodes
-
1.
(College of Information and Navigation, Air Force Engineering University, Xi'an 710077, China)
-
2.
(College of Air and Missile Defense, Air Force Engineering University, Xi'an 710051, China)
-
摘要: 在底層網(wǎng)絡節(jié)點異構(gòu)的環(huán)境中,能耗優(yōu)化的虛擬網(wǎng)絡映射問題并不是最小化工作節(jié)點和鏈路數(shù)。該文針對此問題,構(gòu)建底層網(wǎng)絡節(jié)點和鏈路的負載能耗模型,并以能耗最優(yōu)為目標,建立虛擬網(wǎng)絡映射問題的數(shù)學模型,提出一種能耗感知虛擬網(wǎng)絡映射算法。該算法在節(jié)點映射階段以最小化能耗和協(xié)調(diào)鏈路映射為原則,將虛擬節(jié)點映射至綜合資源能力最大的底層節(jié)點上,并采用改進的能耗感知k最短路徑法進行鏈路映射。仿真結(jié)果表明,該算法顯著減少虛擬網(wǎng)絡映射的能耗,且底層網(wǎng)絡節(jié)點異構(gòu)性越大,能耗優(yōu)勢更為明顯。
-
關(guān)鍵詞:
- 網(wǎng)絡虛擬化 /
- 虛擬網(wǎng)絡映射 /
- 能耗模型 /
- 資源能力
Abstract: The energy optimized virtual network embedding problem in the substrate network with heterogeneous nodes is not to minimize the number of working nodes and links. The load-based energy consumption models of the node and link in the substrate network are built, a mathematical model of the virtual network embedding problem is modeled in order to reduce energy consumption, and an energy-aware virtual network embedding heuristic algorithm is proposed. Based on the principles of energy optimization and coordination with link mapping, the virtual node is mapped onto the substrate node with the highest comprehensive resource capacity in the node mapping phase, and the link mapping phase is based on the energy-aware k shortest path algorithm. Simulation results show that the proposed algorithm reduces the energy consumption significantly, and the heterogeneity of substrate network nodes is greater, reducing the energy consumption is more obvious. -
Fisher W, Suchara M, and Rexford J. Greening backbone networks: reducing energy consumption by shutting off cables in bundled links[C]. Proceedings of the first ACM SIGCOMM Workshop on Green Networking, New Delhi, India, 2010: 29-34. 林闖, 田源, 姚敏. 綠色網(wǎng)絡和綠色評價: 節(jié)能機制, 模型和評價[J]. 計算機學報, 2011, 34(4): 593-612. Lin Chuang, Tian Yuan, and Yao Min. Green network and green evaluation: mechanism, modeling and evaluation[J]. Chinese Journal of Computer, 2011, 34(4): 593-612. Chowdhury N M and Boutaba R. A survey of network virtualization[J]. Computer Networks, 2010, 54(5): 862-876. Turner J S and Taylor D E. Diversifying the Internet[C]. Proceedings of the IEEE Global Communications Conference, Saint Louis, USA, 2005, 2: 1-6. Fischer A, Botero J F, Till B M, et al.. Virtual network embedding: a survey[J]. IEEE Communications Surveys Tutorials, 2013, 15(4): 1888-1906. Hsu W H and Shieh Y P. Virtual network mapping algorithm in the cloud infrastructure[J]. Journal of Network and Computer Applications, 2013, 36(6): 1724-1734. 余建軍, 吳春明. 支持接入控制的虛擬網(wǎng)映射近似算法[J]. 電子與信息學報, 2014, 36(5): 1235-1241. Yu Jian-jun and Wu Chun-ming. Virtual network mapping approximation algorithm with admission control[J]. Journal of Electronics Information Technology, 2014, 36(5): 1235-1241. Chabarek J, Sommers J, Barford P, et al.. Power awareness in network design and routing[C]. Proceedings of the IEEE International Conference on Computer Communications, Phoenix, USA, 2008: 1130-1138. Botero J F, Hesselbach X, Duelli M, et al.. Energy efficient virtual network embedding[J]. IEEE Communications Letters, 2012, 16(5): 756-759. Botero J F and Hesselbach X. Greener networking in a network virtualization environment[J]. Computer Networks, 2013, 57(9): 2021-2039. Su S, Zhang Z, Cheng X, et al.. Energy-aware virtual network embedding through consolidation[C]. Proceedings of the IEEE International Conference on Computer Communications Workshops, Orlando, USA, 2012: 127-132. Su S, Zhang Z, Liu A X, et al.. Energy-aware virtual network embedding[J]. IEEE/ACM Transactions on Networking, 2014, 22(5): 1607-1620. Zhang Z, Su S, Niu X, et al.. Minimizing electricity cost in geographical virtual network embedding[C]. Proceedings of the IEEE Global Communications Conference, Anaheim, USA, 2012: 2609-2614. Rivoire S, Ranganathan P, and Kozyrakis C. A comparison of high-level full-system power models[J]. HotPower, 2008, 15(8): 3-9. Economou D, Rivoire S, Kozyrakis C, et al.. Full-system power analysis and modeling for server environments[C]. Proceedings of Workshop Modeling, Benchmarking, Simulation, Boston, USA, 2006: 70-77. Turner J S, Crowley P, DeHart J, et al.. Supercharging planetlab: a high performance, multi-application, overlay network platform[J]. ACM SIGCOMM Computer Communication Review, 2007, 37(4): 85-96. Sivaraman V, Vishwanath A, Zhao Z, et al.. Profiling per-packet and per-byte energy consumption in the NetFPGA Gigabit router[C]. Proceedings of the 30th IEEE International Conference on Computer Communications Workshops, Shanghai, China, 2011: 331-336. Eppstein D. Finding the k shortest paths[C]. Proceedings of IEEE Symposium on Foundations of Computer Science, Santa Fe, USA, 1994: 154-165. Beck M T, Linnhoff-Popien C, Fischer A, et al.. A simulation framework for Virtual Network Embedding algorithms[C]. Proceedings of the IEEE Telecommunications Network Strategy and Planning Symposium (Networks), Madeira Island, Portugal, 2014: 1-6. Lu G H, Guo C X, Li Y L, et al.. Serverswitch: a programmable and high performance platform for data center networks[C]. Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, Berkeley, USA, 2011: 1-14. -
計量
- 文章訪問數(shù): 1302
- HTML全文瀏覽量: 110
- PDF下載量: 751
- 被引次數(shù): 0